O p e n ac c e s s r e c e I v e d



Yüklə 1,44 Mb.
Pdf görüntüsü
səhifə7/10
tarix02.06.2023
ölçüsü1,44 Mb.
#123312
1   2   3   4   5   6   7   8   9   10
document

Figure 3. Radiation for 80 GeV electrons traversing a 1.5 mm thick diamond crystal aligned to the
100axis. The entry angles
to the axis are less than Lindhard’s critical angle for channeling, ψ
1
=
35 μrad. Symbols for data and the simulation neglecting
radiation reaction are as in figure
2
. The theoretical spectrum calculated using the BCK model and based on the LL equation
(‘RR sim’) is shown as a green dotted line while the spectrum based on the same model and equation but including the G(χ)
correction (‘RR G(χ) sim’) is shown as a red solid line. The dashed-dotted blue line shows the spectrum calculated using the
BCK model in the stochastic scheme [
1
] (‘stochastic sim’) and the simulated amorphous spectrum (‘amorphous sim’) is shown
as a solid purple line. Reprinted figure with permission from [
1
], Copyright (2020) by the American Physical Society.
computed as if the field were constant locally, see [
1
] and references therein. The ratio of the quantum and
the classical radiated energy in a constant field may be parametrized as [
25
,
43
]
G(χ) =

1 + 4.8(1 + χ) ln(1 + 1.7χ) + 2.44χ
2

2/3
.
(8)
When this reduction is included in an approximate manner by multiplying the damping force in the LL
equation by G(χ), it produces the red simulation curve shown in figure
3
that essentially reproduces the
experimental spectrum. The result of a quantum simulation, the so-called stochastic scheme, is shown by a
blue dashed-dotted line. It does not involve the classical LL equation but instead emission of quanta of finite
energy. In a given segment the photon emission is a statistical process governed by probabilities computed
in the semiclassical BCK approach, see [
1
] for details. Except for a narrow region around the spectral
maximum, where the quantum simulation is slightly superior, there is not much difference between our
simulation based on the LL equation and the quantum simulation.
Since the energy losses are moderate for the positrons in the planar channeling regime, it could be
expected that spectra obtained neglecting radiation-reaction effects would be roughly adequate, but the
experiments and simulations clearly show that it is not the case. The simulations without radiation reaction
overestimate the emitted radiation significantly. The electrons in the axial channeling regime, on the other
hand, experience large energy losses as they traverse the crystal. Here exclusion of the G-factor implies an
overestimate of the damping force and, in turn, an underestimate of electron energy already after traversing
a small part of the crystal, and hence of the emitted radiation intensity in the later parts of the crystal.
As seen in figures
2
and
3
, the photon emission spectra have features that cannot be explained by using
only the Lorentz force to calculate the particle trajectories. Moreover, when the radiation reaction is
included in the simulations, the agreement between theory and data is remarkably good. Despite this, there
remains a discrepancy between the energy loss calculated from the LL equation and calculated by
integrating the radiation spectrum. This discrepancy is due to the quantum corrections introduced in the
radiation process. The positrons in figure
2
lose 17% of their incoming energy by integrating the radiation
spectrum and 20% of their incoming energy according to the LL equation, corresponding to an excess of
the loss according to the LL equation over the spectrum energy loss by 19%. Due to the stronger fields
encountered, the discrepancy is a priori larger in the axial channeling regime as in figure
3
where the
electrons lose more than half of their initial energy. However, the inclusion of the G-factor on the damping
force in the LL equation reduces the ratio of the radiation energy loss resulting from the LL equation to the
spectrum energy loss to just 1.07. This modest difference of 7% may be taken as an indication of the quality
of the procedure of including the G-factor on the damping force as well as of the close proximity to a
scenario with photon production in a (locally) constant field.

Yüklə 1,44 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin