O p e n ac c e s s r e c e I v e d


 Data analysis and simulations



Yüklə 1,44 Mb.
Pdf görüntüsü
səhifə6/10
tarix02.06.2023
ölçüsü1,44 Mb.
#123312
1   2   3   4   5   6   7   8   9   10
document

5. Data analysis and simulations
The experimental spectra presented below are compared to theoretical simulations based on the LL
equation as well as to simulations in which the Lorentz force is the sole agent of force on the radiating
particle. The reader is referred to [
1
] for details on these calculations. The classical particle trajectory is
determined by the standard Runge–Kutta 45 ordinary differential equation (ODE) solver, where a random
change in momentum direction is introduced between every time step due to single collisions with lattice
nuclei.
The motion of a charged particle incident at a small angle to a major crystallographic direction is
effectively governed by the continuum potential obtained by smearing the atomic charges along the
corresponding axis or plane, see [
28
,
29
,
38
,
39
]. This insight, due to Lindhard et al [
38
], is the key to
understanding coherence effects in aligned single crystals. At the energies considered here, the motion is
effectively classical. For χ
1 the radiation spectrum may be computed according to standard classical
electrodynamics [
40
]. The only non-negligible quantum effect for the positrons in our experiment is the
photon recoil. As shown in a later work by Lindhard [
41
] the recoil can be taken into account by a simple
substitution of the frequency variable in the classical photon number spectrum regardless of the details of
4


New J. Phys. 23 (2021) 085001
C F Nielsen et al
Figure 2. Radiation for 50 GeV positrons passing a 6.2 mm thick silicon crystal aligned along (110) planes. The entry angles to
the planes are selected to 0–30 μrad. Experimental data is shown as blue triangles. The theoretical spectra are based on the
substitution model. The LL equation simulation (‘RR sim’) is shown as a red solid line, the Lorentz-force simulation (‘noRR
sim’) is displayed by a yellow dashed line. Purple squares show data for an amorphous/random setting. The simulated
amorphous spectrum (‘amorphous sim’) is shown by a solid green curve. Reprinted figure with permission from [
1
], Copyright
(2020) by the American Physical Society.
the motion of the particle,
ω
→ ω

ω/
(1
− ω/E).
(7)
We refer to this as the substitution model. The magnitude of the recoil correction for positrons in our
experiment is displayed in figure 1 in [
1
]. For the electrons, where also the spin affects the radiation
spectrum, we apply a formula for the radiation spectrum obtained by Belkacem et al [
42
]. It is based on the
semi-classical method by Baier et al [
43
], in which the particle motion is treated classically, whereas the
interaction with the radiation field is quantal including both recoil and spin effects. We refer to this as the
BCK model. The magnitude of spin effects in radiation for the positrons and electrons in our experiments is
also shown in figure 1 in [
1
]. For the positrons, the substitution and BCK models yield identical results at
photon energies where coherence effects due to the crystalline structure are significant, see [
1
].
Figure
2
shows the radiation recorded for 50 GeV positrons incident on a 6.2 mm thick silicon single
crystal with angles in the range 0–30 μrad to the (110) planes. Under these conditions, the average value of
χ
experienced by the particles is ¯
χ =
0.01. The selected range in angle of incidence to the planes implies
that a substantial fraction of the positrons will be bound to oscillate between a set of neighboring planes
(channeling), at least in the first part of the crystal. The experimental data is compared to two simulations,
both based on the substitution model. One simulation pertains to the Lorentz force as the sole agent of
force (yellow dashed curve), the other pertains to the LL equation (red full-drawn curve). It is evident that
the spectrum obtained from the Lorentz force (neglecting the radiation reaction) substantially overshoots
the experimental data. The spectrum from the LL equation (including the radiation reaction), on the other
hand, closely reproduces the experimental data. For comparison, the figure also displays the spectra
measured and simulated for particles incident far from all major crystallographic directions corresponding
to the target being amorphous silicon, albeit with the same density as crystalline silicon.
Figure
3
shows the radiation recorded for 80 GeV electrons incident on a 1.5 mm thick diamond crystal
with angles to the
100axis that are less than the critical angle ψ
1
for channeling, which in this case
assumes the value of 35 μrad. At these angles a major part of the electrons will initially be bound to move
around a single string of atoms (channeling). The average value ¯
χ
of the strong-field parameter is 0.06
indicating that quantum effects are modest while more prominent than for the 50 GeV positrons incident
near silicon planes. In particular, coherence effects due to the crystal structure extend to photons of higher
energy compared to that of the incident particle. This implies that, in addition to photon recoil, also the
particle’s spin detectably affects the emission process, so we compare the experimental data to simulations
based on the BCK model. As in the case of positrons, the simulation in which radiation reaction is neglected
strongly overestimates the experimental results. On the other hand, the simulated spectrum based on the LL
equation (green dotted line) is substantially lower than the measured spectrum. The reason for this
discrepancy is that the radiative energy-loss rate due to classical electrodynamics, which is built into the LL
equation, is higher than that obtained by, for instance, the semiclassical BCK approach. But a simplification
applies: coherence in the radiation process is only maintained over regions of space connected by the
radiation cone. In the considered case, the excursions in angle made by the electrons interacting with the
continuum strings are much larger than the opening angle of this cone. Hence coherence is only maintained
over fragments of the path corresponding to small variations in the distance to the atomic strings, and
hence, to small variations in the encountered field strengths. In other words, the radiation may be
5


New J. Phys. 23 (2021) 085001
C F Nielsen et al

Yüklə 1,44 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin