Fizika” faniga kirish. Reja


Klassik fizikaning rivojlanishi



Yüklə 28,45 Kb.
səhifə2/3
tarix01.05.2023
ölçüsü28,45 Kb.
#105702
1   2   3
“Fizika” faniga kirish

Klassik fizikaning rivojlanishi.
17-asrga kelib G.Galiley mexanik harakatni tajriba yoʻli bilan oʻrganib, harakatni matematik formulalar asosida ifodalash zarurligini aniqladi va bu fizika fanining keskin rivojiga turtki boʻldi. U jismlarning oʻzaro taʼsiri natijasida tezlik oʻzgarib, tezlanish hosil boʻlishiini, taʼsir boʻlmaganda harakat holatining oʻzgarmasligi, yaʼni tezlanishning nolga tengligini yoki tezlikning oʻzgarmasdan saklanishini qayd etib, Aristotelning shu masalaga qarashli fikrini, yaʼni taʼsir natijasida tezlik hosil boʻlishini inkor etadi. Keyinchalik Galiley aniqlagan qonun inersiya qonuni yoki Nyutonning mexanikaga oid birinchi qonuni degan nom oldi. 1600 yilda U. Gilbert elektr va magnit xrdisalarni oʻrganish bilan shuhrat qozondi hamda Yer tirik magnit ekanligini isbotladi. U kompas magnit milining burilishini Yerning katta magnitga oʻxshashi orqali tushuntirdi, magnetizm va elektrning oʻzaro bogʻlanishini tekshirdi. Galiley mexanikadagi nisbiylik prinsipini ochdi va erkin tushayotgan jism tezlanishi uning tezligi va massasiga bogʻliq emasligini isbotladi. E.Torrichelli yuqoridagi prinsipdan foydalanib, atmosfera bosimining mavjudligini aniqladi va birinchi barometrni yaratdi. R. Boyl va E. Mariott gazlarning elastikligini aniqladilar hamda gazlar uchun birinchi qonun —Boyl—Mariott qonunini yaratdilar. Gollandiyalik astronom va matematik V.Snellius (Snell) bilan R.Dekart yorugʻlik nurining sinish qonunini ochdilar.
17-asr Fizikasining eng katta yutuklaridan biri klassik mexanikaning yaratilishi boʻldi. I.Nyuton 1687 yilda Galiley va oʻz zamondoshlarining gʻoyalarini umumlashtirib, klassik mexanikaning asosiy qonunlarini taʼriflab berdi. Nyuton tomonidan jismlar holati tushunchasining kiritilishi barcha fizik royalar uchun muhim boʻldi, jismlar tizimining holatini mexanikada ularning koordinatalari va impulyelari orqali toʻla aniqlash imkoniyati yaratildi. Agar jiyemning boshlangich vaqtdagi holati hamda harakat davomida unga taʼsir etuvchi kuchlarning tabiati maʼlum boʻlsa, Nyuton qonunlariga asoslangan holda shu jiyemning harakat tenglamasini tuzish mumkin. Bu harakat tenglamasidan foydalanib, ushbu jiyemning istalgan vaqtda fazodagi oʻrnini, tezlik, tezlanish va fizik kattaliklarni aniklash mumkin boʻldi. Nyuton sayyoralar harakatlarini tushuntiruvchi Kepler krnunlari asosida butun olam tortishish qonunini ochdi va bu qonun orqali Oy, sayyoralar va kometalar harakatini isbotlab berdi. X. Poygens va G. Leybnits harakat miqdorining saklanish qonunini taʼrifladilar.
17-asrning 2yarmida fizik optika asoslari yaratila boshlandi, teleskop va boshqa optik qurilmalar yaratildi. Fizika Grimaldi yorugʻlik difraksiyasini, I. Nyuton esa yorugʻlik dispersiyasiik tadqiq qildi. 1676 yilda daniyalik astronom O.Ryomer yorugʻlik tezligini oʻlchadi. Shu davrdan yorugʻlikning korpuskulyar va toʻlqin nazariyalari yuzaga keldi hamda rivoj topa boshladi. I.Nyuton yorugʻlikni korpuskula (zarra)lar harakati orqali tushuntirsa, X.Gyuygens uni faraz qilinuvchi muhit — efirda tarqaladigan toʻlqinlar yordamida tushuntirdi.
Shunday qilib, 17-asrda klassik mexanika mustahkam oʻrin egalladi, akustika, optika, elektr va magnetizm, issiqlik hodisalarini oʻrganish sohalarida katta izlanishlar boshlandi. 18-asrga kelib tajriba va mat.dan kengfoydalangan klassik mexanika va osmon mexanikasi yanada tez surʼatlar bilan rivojlandi. Yer va Osmon hodisalarini mexanika krnunlari orqali tushuntirish asosiy maqsad hamda bosh taʼlimot hisoblanar edi. Hatto, oʻrganilayotgan fizik hodisani mexanika qonunlari orqali tushuntirish mumkin boʻlmasa, tanlangan tushuntirish yoʻli toʻliq emas yoki notoʻgʻri deb yuritilar edi.
18-asrda zarralar va qattiq jismlar mexanikasi bilan birga gaz hamda suyuqliklar mexanikasi rivojlandi. D.Bernulli, L.Eyler, J.Lagranj va boshqa ideal suyuqlik gidrodinamikasiga asos soldilar. Fransuz olimi Sh. Dyufe elektrning ikki turi mavjudligini aniqladi hamda ularning oʻzaro tortilish va itarilishini koʻrsatdi. Amerikalik olim B. Franklin elektr zaryadining saqlanish qonunini aniqladi. T.Kavendish va undan mustasno Sh. Kulon qoʻzgʻalmas elektr zaryadining oʻzaro taʼsir kuchini tajribada aniqladilar hamda matematik ifodasini topib, asosiy qonun — Kulon qonunini ochdilar.
Rus fiziklari G.Rixman, M.V.77omonosov va amerikalik olim B. Franklin atmosferada hosil boʻladigan elektr, yashinning tabiatini tushuntirib berdilar. A.Galvani, A. Volta va keyinchalik rus fizigi hamda elektrotexnigi V. Petrovning kuzatishlari va tadqiqotlari elektrodinamikaning vujudga kelishi hamda tez surʼatlar bilan rivojlanishiga sabab boʻldi. Optika sohasida P. Buger va I. Lambert ishlari tufayli fotometriyaga asos solindi. Infraqizil (ingliz optigi V. Gershel va ingliz kimyogari U. Vollston) va ultrabinafsha (ingliz kimyogari I. Ritter) nurlar mavjudligi aniqlandi. Issiqlik hodisalari, issiklik miqdori, tra, issiqlik sigʻimi, issiklik oʻtkazuvchanlik va h.k.ni oʻrganishda xam qator izlanishlar olib borildi. M. Lomonosov, R.Boyl, R.Guk, Bernullilar issiqlikning molekulyar — kinetik nazariyasiga asos soldilar.
19-asr boshida T. Yung va O. Frenellarning toʻlqin nazariyasi asosida yorugʻlik difraksiyasi va yorugʻlik interferensiyasi yaratildi. Yorugʻlikni koʻndalang toʻlqin sifatida elastik muhitda tarkaladi deb, Frenel singan va qaytgan yorugʻlik toʻlqinlarining intensivlaigini belgilovchi miqdoriy qonunni aniqladi. Fransuz fizigi E.Malyus yorugʻlikning qutblanishi hodisasini kashf etdi, yorugʻlik spektriga va difraksiyasiga tegishli izlanishlar olib bordi. Yorugʻlikning tabiati haqidagi korpuskulyar va toʻlqin nazariyalari orasidagi deyarli ikki asr davom etgan kurash toʻlqin nazariyasi foydasiga hal boʻldi.
Italiyalik olimlar A. Galvani va A.Voltalarning elektr tokini kashf etishlari hamda dunyoda birinchi marta 1800 yilda galvanik elementning yasalishi fizika fanining rivojlanishida katta ahamiyatga ega boʻldi. 1820 yilda daniyalik fizik X. Ersted tokli oʻtkazgichning kompas mili bilan oʻzaro taʼsirda boʻlishini elektr va magnit hodisalar orasida boglanish borligi bilan tushuntirdi. Shu yillarda A. Amper zaryadlangan zarralarning tartibli harakati tufayli paydo boʻluvchi elektr toki bilan barcha magnit hodisalari bogʻliq ekanligi toʻgʻrisida xulosaga keldi va tajriba asosida tokli oʻtkazgichlar orasidagi vujudga keluvchi oʻzaro taʼsir kuchini ifodalovchi qonunni ixtiro qildi (Amper qonuni). 1831 yilda M. Faradey elektromagnit induksiya hodisasini ochdi va elektromagnit maydon tushunchasi haqidagi taʼlimotni yaratdi. Metallarning elektr oʻtkazuvchanligini oʻrganish Om krnunining (1826), moddalarning issiqlik xususiyatlarini oʻrganish — issiqlik sigʻimi qonunining yaratilishiga olib keldi.
Tabiatning barcha hodisalarini bir butun qilib bogʻlovchi energiyaning saqlanish va aylanish qonunining ochilishi tabiatshunoslikda, jumladan, fizikaning rivojlanishida katta ahamiyatga ega. 19-asr oʻrtalariga kelib tajriba orqali issiklik miqdori bilan bajarilgan ish miqdorining oʻzaro qiyosiy tengligi isbotlandi va shu asosda issiqlik energiyaning maxsus turi ekanligi aniqlandi. Energiyaning saklanish va aylanish qonuni issiqlik hodisalari nazariyasining asosiy qonuni boʻlib, u termodinamikannsh birinchi bosh qonuni deb ataladi. Bu qonunni Yu.R.Mayer taʼriflagan, nemis fizigi G.Gelmgots aniqroq shaklga keltirgan (1874). Termodinamikaning rivojlanishida S. Karno, R. Kpauzius, U.Tomson, E.Klapeyron va D.I.A/yendeleyevlarning xizmatlari katta boʻldi. S. Karno issiqlikning mexanik xdrakatga aylanishini aniqladi, R.Klauzius, U. Tomson issiklik nazariyasining asosiy qonuni — termodinamikaning ikkinchi bosh qonunini taʼrifladilar, R. Boyl, E. Mariott, J.GeyLyussak, B. Klapeyron ideal gazning xrlat tenglamasini aniqladilar. D.I.Mendeleyev uni barcha gazlar uchun umumlashtirdi va h.k. Termodinamika bilan birga issiqlikning molekulyarkinetik nazariyasi rivojlanib bordi. A. Eynshteyn, polyak fizigi M. Smoluxovskiy va fransuz fizigi J. Perrenlar broun harakati atom hamda molekulalarning issiklik harakati ekanligini isbotlab, molekulyarkinetik nazariya asoslari boʻlgan broun harakatining miqsoriy nazariyasini yaratdilar. Bu esa, oʻz navbatida, statistik mexanikaning toʻla tan olinishiga olib keldi. J.K.Maksvell kiritgan ehtimollik xarakteriga ega boʻlgan statistik tushunchalar asosida gazlardagi molekulalar tezligi, erkin yugurish uzunligi, vaqt birligi ichidagi toʻqnashuvlar soni va boshqa kattaliklarning oʻrtacha qiymatlarini topishga yoʻl ochildi, traning molekulalarning oʻrtacha kinetik energiyasiga bogʻlikligi koʻrsatildi. Materiyaning kinetik nazariyasi taraqqiy etishi L. Boltsman tomonidan statistik mexanika — Boltsman statistikasishtt yaratilishiga olib keldi. 19-asrning 2yarmida J.K.Maksvell elektromagnit hodisalarning elektromagnit maydon tushunchasiga asoslangan yangi nazariyasini va uni ifodalovchi tegishli tenglamalar tizimini yaratdi. U tabiatda elektromagnit toʻlqinlarning mavjudligini, ularning anik, xususiyatlari — bosimi, difraksiyasi, interferensiyasi, tarqalish tezligi, qutblanishi va h.k. borligini aniqladi. Maksvell nazariyasining eng muhim natijasi elektromagnit toʻlqinlarning tarqalish tezligi yoruglik tezligiga teng boʻlgan qiymatga ega ekanligi toʻgʻrisidagi xulosa hisoblandi. Maksvell nazariyasidan yorugʻlikning elektromagnit xususiyatiga ega ekanligi kelib chikdi. G.Ge/iShunday qilib, 19-asr fizikasi 2 boʻlimdan — jismlar fizikasi va maydon fizikasidan iborat boʻldi. Jismlar fizikasi asosida molekulyarkinetik nazariya qabul qilingan boʻlsa, maydon fizikasila elektromagnit maydon nazariyasi asosiy rol oʻynadi.
Klassik fizika modda, vaqt, fazo, massa, energiya va h.k. haqidagi maxsus tasavvurlar, tushunchalar, qonunlar, prinsiplardan tashkil topgan. U klassik mexanika, klassik statistika, klassik termodinamika, klassik elektrodinamika va boshqa boʻlimlarga boʻlinadi. Klassik mexanikada harakat qonunlari — Nyuton qonunlaridan iborat. Moddiy nuqta, mutlaq qattiq jism, tutash mux,itlar tushunchalari muhim rol oʻynaydi. Bularga moye tarzda moddiy nuqta mexanikasi, mutlaq qattiq jism mexanikasi, tutash muhit mexanikasi mavjud.
Koʻp amaliy hollarda qoniqarli natijalar beradigan klassik fizika katta tezliklar va mikroobʼyektlar bilan bogʻliq hodisalarni toʻgʻri tushuntirishga ojizlik qildi. Shunday hodisalar qatoriga qattiq jismlarning issiqlik sigʻimi, atom tizimlarining tuzilishi va ulardagi oʻzgarishlar xarakteri, elementar zarralarning oʻzaro taʼsiri hamda bir-biriga aylanishi, mikrotizimlardagi energetik holatlarning uzlukli oʻzgarishi, massaning tezlikka bogʻliqligi va boshqa masalalar kiradi. Fizikaning yangi taraqqiyoti yuqoridagiga oʻxshash hodisalarni ham toʻgʻri tushuntirib bera oladigan yangi, noklassik tasavvurlarga olib keldi. Bunday tasavvurlarga asoslangan yangi fizika maydon kvant nazariyasi va nisbiylik nazariyasiaan iborat.
Fizikaning klassik va noklassik fizikaga ajratilishi shartlidir. Galiley — Nyuton mexanikasi, Faradey —Maksvell elektrodinamikasi, Boltsman — Gibbs statistikasini, odatda, klassik fizikaga, maydon kvant nazariyasi va nisbiylik nazariyasini hozirgi zamon fizikasiga kiritishadi. Tarixiy jihatdan bu haqiqatan ham shunday. Ammo klassik fizika bilan hozirgi zamon fizikasini bir-biriga qarshi qoʻyish asossizdir. Yangi texnika, kosmosni egallash kabi sohalarda klassik fizikadan keng foydalanib muhim yutuqlarga erishilmokda. Maksvell tomonidan elektromagnit qodisalarni oʻrganish jarayonlari uning klassik elektrodinamika"^ yaratishi bilan yakunlandi. 1897 yilda J. Tomsonnpng elektron zarrasining ochishi bilan fizika rivojida yangi davr boshlandi.


Yüklə 28,45 Kb.

Dostları ilə paylaş:
1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin