Saurashtra University Re Accredited Grade ‘B’ by naac



Yüklə 7,99 Mb.
Pdf görüntüsü
səhifə5/19
tarix13.08.2017
ölçüsü7,99 Mb.
1   2   3   4   5   6   7   8   9   ...   19

                                                                                                           Review of Literature 
Table 2.8: Lipids and sterols from peel of Opuntia spp. fruit.* 
Compounds 
g/kg of total lipids 
Ergosterol 
0.68 ± 0.22 
Campestorl 
8.76 ± 2.31 
Sigmasterol 
2.12 ± 0.42 
Lanosterol 
1.66 ± 0.32 
β-Sitosterol 
21.1 ± 2.55 

5
-Avenasterol 
2.71 ± 0.33 

7
-Avenasterol Not 
detected 
Total Sterol content 
37.0 ± 2.55 
α – Tacopherol 
17.6 ± 1.55 
β – Tacopherol 
2.22 ± 0.45 
γ – Tacopherol 
1.74 ± 0.31 
δ – Tacopherol 
0.26 ± 0.12 
Total Vit E 
21.8 ± 1.98 
β – Carotene 
2.54 ± 0.46 
Vitamine K
1
1.09 ± 0.32 
*Adopted form (Ramadan & Morsel, 2003a) 
 
Polyphenol & Pigments 
The peel of Opuntia spp. fruit may have orange, red and purple colored may be due to 
betacyanins and betaxanthins while green due to chlorophylls and carotenoids. Since little 
is known about polyphenols and pigments of the peel future studies may put forward our 
knowledge. 
 
2.3.3.2.2 Pulp 
The pulp is the edible part of the fruit and is composed of water, sugar, betacyanins, 
betaxanthins, minerals, vitamins and amino acids. Cassano et al. (2007) studied the 
potentiality of a membrane-based process for the clarification and the concentration of 
the cactus pear fruit juice. The juice quality was analysed in terms of total antioxidant 
activity (TAA), ascorbic, citric and glutamic acid, betalains and viscosity in order to 
 
53

                                                                                                           Review of Literature 
evaluate the effects of the membrane processes on the quality and composition of the 
juice. In table 2.9 the evaluation of total soluble solids (TSS), TAA and ascorbic acid, 
citric acid, glutamic acid, betaxanthins and betacyanins in various samples of Opuntia 
ficus indica (L.) Mill. fruit juice by ultrafiltration or osmotic distillation. Moßhammer et 
al. (2005) studied visual appearance, pigment stability and betalain content of fruit juice 
of  Opuntia ficus indica (L.) Mill at pH values ranging from 3 to 7. Moßhammer et al. 
(2006) developed a process for the production of both juice concentrates and powders 
from Opuntia ficus indica fruit at laboratory and pilot plant-scale respectively and cross 
flow microfiltration and freeze drying processes reported due to thermolabile betalains 
for juice concentration and preservation. 
  
Table 2.9: Evaluation of various samples of Opuntia ficus indica (L.) Mill. fruit juice 
obtained by ultrafiltration or osmotic distillation. 
Parameters Contents 
TSS (ºBrix) 
13.0 to 58.0 
TAA (mM Trolox) 
4.4 to 5.0 
Ascorbic acid (mg/L) 
30.0 to 43.0 
Citric acid (mg/L) 
365.0 to 427.4 
Glutammic acid (g/L) 
1.95 to 2.10 
Betaxanthins (mg/L) 
52.5 to 61.6 
Betacyanins (mg/L)    
11.0 to 19.9 
 
Minerals, Vitamins & Amino acids 
The mineral composition is characterized by high amounts of potassium, calcium and 
magnesium while other minerals are in the normal range of fruits (Table 2.10) 
(Dominguez-Lopez, 1995; Kossori et al., 1998; Stintzing et al., 2001; Piga, 2004; 
Feugang et al., 2006). 
 
 
 
 
 
54

                                                                                                           Review of Literature 
Table 2.10: The Mineral composition of cactus pear pulp. 
Minerals mg/100gm 
Potassium (K) 
90 – 217 
Calcium (Ca) 
12.8 – 59 
Magnesium (Mg) 
16.1 – 98.4 
Phosphorus (P as PO
4
)  
15 – 32.8 
Sodium (Na) 
0.6 – 1.1 
Iron (Fe) 
0.4 – 1.5 
 
Diaz Medina et al. (2007) reported mineral compositions in fruits belonging to two 
species of prickly pear Opuntia ficus indica and Opuntia dillenii, differentiating green 
and orange colour of pulp in O. ficus indica from Tenerife Island (Table 2.11
). 
 
Table 2.11: Mineral composition from O. dillenii and O. ficus indica.
O. dillenii 
O. ficus indica 
Minerals 
Total 
(mg/100g;  
Mean ± SD) 
Total 
(mg/100g; 
Mean ± SD) 
Green pulp 
(mg/100g; 
Mean ± SD) 
Orange pulp 
(mg/100g; 
Mean ± SD) 

90.8 ± 25.1 
158.3 ± 32.8 
159 ± 30.5 
156 ± 36.2 
Ca 
53.5 ± 18.7  
26.3 ± 7.6 
24.4 ± 7.3 
28.8 ± 7.5 
Mg 
45.4 ± 10.2 
25.1 ± 5.7 
26.7 ± 5.5 
23.1 ± 5.4 
Na 
15.3 ± 16.2 
0.625 ± 0.822 
0.524 ± 0.709 
0.758 ± 0.949 
Fe 
0.153 ± 0.031 
0.198 ± 0.057 
0.2 ± 0.05 
0.195 ± 0.067 
Cu 
0.0334 ± 0.005  0.0389 ± 0.009  0.0384 ± 0.001  0.0396 ± 0.008 
Zn 
0.129 ± 0.049 
0.205 ± 0.005 
0.0204 ± 0.053  0.0207 ± 0.049 
Mn 
0.509 ± 0.380 
0.303 ± 0.158 
0.301 ± 0.156 
0.306 ± 0.165 
Ni 
0.002 ± 0.008 
0.0285 ± 0.01 
0.0298 ± 0.012  0.0268 ± 0.007 
Cr 
0.0144 ± 0.003  0.0109 ± 0.003  0.0115 ± 0.004  0.0102 ± 0.004 
* Diaz Medina et al., 2007. 
 
 
55

                                                                                                           Review of Literature 
Cactus pear is a good source of ascorbic acid (1 – 81 mg/100 g fresh fruit) along with 
trace amounts of niacin, riboflavin, thiamine, carotenoids, vitamin E and K
1
. Various free 
amino acids were found in the cactus pear with extraordinarily high level of proline and 
taurine (Table 2.12) (Stintzing et al., 2001; Piga, 2004; Feugang et al., 2006). 
Table 2.12: Amino acid contents in fruit pulp of Opuntia spp.
Amino acids 
mg/100 g 
Total Amino acids 
257.24  
Alanine 
8.72 – 9.66 
Arginine 3.05 
 
Asparagine 4.16 
 
Asparaginic acid 
Not Valid 
Glutamin acid 
6.61 – 8.3  
Glutamine 
34.62 – 57.46  
Glycine 1.13 
 
Histidine 4.52 
 
Isoleucine 3.12 
 
Leucine 2.06 
 
Lysine 
1.74 – 5.33  
Methionine 
5.52 – 7.69  
Phenylalanine 2.33 
 
Serine 
17.45 – 21.75  
Threonine 1.33 
 
Tyrosine 1.23 
 
Tryptophane 1.26 
 
Valine 3.94 
 
Alpha-aminobutyric acid 
0.11  
Carnosine 0.59 
 
Citrulline 1.63 
 
Proline 
126.52 – 176.87  
Taurine 
43.43 – 57.21  
Stintzing et al., 2001; Piga, 2004; Feugang et al., 2006 
 
56

                                                                                                           Review of Literature 
Sugars, Hydrocolloids & Organic acids 
Total sugars range from 12 – 17 ºBrix and are mainly of the reducing type with glucose 
being the predominant sugar and fructose being the second sugar thus the fruit pulp is 
very sweet (Piga, 2003). Directly absorbable high glucose concentrations in cactus fruits 
represent an instantly available energy source for brain and nerve cells while fructose 
being sweeter may enhance the fruit’s flavor (Feugang et al., 2006). Some authors have 
also reported the occurrence of galactose and maltose (Stintzing et al., 2001). The high 
sugar content of the pulp results in sugar:acid ratios within the range of 90:1 to 490:1 
which is responsible for the bland taste and therefore far from a sensory pleasant ratio of 
10 to 18 (Moßhmmer et al., 2006).  
Extraction of peeled fruits of Opuntia ficus indica afforded with 3.8% yield mucilage, 
which contained 23.4% of galacturonic acid. Total hydrolysis of a mucilage and gas–
liquid chromatographic analysis of the derived alditol acetates indicated the presence of 
arabinose, rhamnose, xylose and galactose in the molar ratio 1.0:1.7:2.5:4.1. Gel 
permeation chromatography on Sepharose CL-4B showed the polysaccharide to be 
composed of at least five fractions. Treatment with cetrimide allowed the separation of an 
insoluble fraction (44.3% yield) which contained 28.0% of uronic acid. This fraction 
contained xylose, rhamnose and galactose in the molar ratio 1.0:2.5:2.8. The soluble 
fraction in cetrimide (15.6% yields) contained uronic acid (16.0%) while arabinose and 
galactose in the molar ratio of 1:2.2. It is composed of two main subfractions as shown by 
gel permeation chromatography. These results indicated that the mucilage from fruits O. 
ficus indica is a complex mixture of polysaccharides less than 50% corresponding to a 
pectin-like polysaccharide (Betty, 2006). 
 
Arabinose (33.1%), Galactose (20.3%), Glucose (1.0 %), Rhamnnose (6.9 %), Xylose 
(18.7 %) reported by Muller, (2001). Kossori et al. (1998) reported carbohydrates and 
fiber composition in the fruit pulp of Opuntia ficus indica (Table 2.13).  
 
 
 
 
 
57

                                                                                                           Review of Literature 
Table 2.13: Sugars (% of dry matter) and fiber (% of total fiber) composition in 
prickly pear fruit pulp.* 
Sugars % 
Saccharose 0.22 
Glucose 35 
Fructose 29.6 
Fibers 
% mean ± SD 
Hemicellulose 
15.5 ± 0.45 
Cellulose 
14.2 ± 1.07 
Pectin 
70.3 ± 1.30 
Lignin 
0.01 ± 0.01 
* Kossori et al., 1998. 
 
The high pH values (5.6 – 6.5) and a low acidity (about 0.05% to 0.18% citric acid) of 
ripe fruits of cactus pears serves as a low acid food (pH > 4.5). Whereas citric acid (62 
mg/100 g fruit weight) is the major organic acid in cactus pear followed by malic acid 
(23.3 mg/100 g), quinic (19.1 mg/100 g), shikimic (2.8 mg/100 g) and also oxalic acids 
were found while isocitric, fumaric, glycolic, and succinic acids were only found in 
traces. Additionally minor acids such as phorbic acid and piscidic acid have been 
detected in Opuntia leaves (Fig 2.15) (Stintzing et al., 2001; Moßhammer et al., 2006). 
 
58

                                                                                                           Review of Literature 
CH
2
COOH
O
H
CH
2
COOH
COOH
CH
2
COOH
O
H
COOH
O
H
O
H
OH
OH
COOH
O
H
OH
OH
COOH
OH
OH
OH
HOOC
HOOC
HOOC
OH
OH
COOH
COOH
Citric acid
Malic acid
Quinic acid
Shikimic acid
Piscidic acid
Phorbic acid
 
Figure 2.15: Chemical structures of organic acids in cactus pear fruit and 
phylloclades. 
 
Lipids 
It is well known that pulp of fruits generally contain very low levels of lipids ranging 
from 0.1 to 1.0%. In prickly pear pulp oil dominating fatty acid (linoleic acid) was 
reported along with palmitic acid and oleic acid also polyunsaturated fatty acids like γ – 
linolenic and α – linolenic acids were detected in good amounts. In pulp oil about 90% of 
the total sterol portion constituted by β – sitosterol followed by campeterol. Interestingly 
δ–tocopherol was the predominant vitamin E homologue followed by α-,  β-,  γ-
tocopherols in far less amounts (Moßhammer et al., 2006). Seeds and pulp of cactus pear 
(Opuntia ficus indica L.) were compared in terms of fatty acids, lipid classes, sterols, fat-
soluble vitamins and b-carotene. Total lipids (TL) in lyophilized seeds and pulp were 
98.8 g/kg (dry weight) and 8.70 g/kg respectively. High amounts of neutral lipids were 
found (87.0% of TL) in seed oil while glycolipids and phospholipids occurred in high 
amount in pulp oil (52.9% of TL). In both oils linoleic acid was the dominating fatty acid 
followed by palmitic and oleic acids respectively. Trienes, γ-and α-linolenic acids were 
 
59

                                                                                                           Review of Literature 
estimated in higher amounts in pulp oil while α-linolenic acid was detected in fewer 
amounts in seed oil. The sterol marker, β-sitosterol, accounted 72% and 49% of the total 
sterol content in seed and pulp oils respectively. Vitamin E and β-carotene level was 
higher in the pulp oil than in the seed oil, whereas γ-tocopherol was the predominant 
component in seed oil and δ-tocopherol was the main constituent in pulp oil. Oils under 
investigation resembled each other in the level of vitamin K
1
 (0.05% of TL) (Ramadan & 
Morsel, 2003). Information provided above is of importance for further chemical 
investigation of cactus pear oil and industrial utilization of the fruit as a raw material of 
oils and functional foods.  
 
Polyphenols 
Phenolics comprise a wide variety of compounds divided into several classes such as 
hydroxybenzoic acid, hydroxycinnamic acids, anthocyanins, proanthocyanidins, 
flavonols, flavones, flavanols, flavanones, isoflavones, stilbenes and lignans those occur 
in a great number of fruits and vegetables (Feugang et al., 2006). Su Feng Chang et al. 
(2008) reported total phenolics (91.5 ± 1.5) and flavonoids (29.2 ± 1.5) along with gallic 
acid (4 ± 0.6), catechin (22.7 ± 0.7) and epicatechin (10.9 ± 0.2) as mg/100 g fresh 
sample of Opuntia dillenii Haw fruits. The phenolic acid composition of the peel and 
pulp of the fruits of Opuntia megacantha (L.) Mill. were analyses and total phenolics, 
flavonoids and condensed tannin levels varied in their amounts (Ndhlala et al., 2007). In 
fruits belonging to two species of prickly pear Opuntia ficus indica and Opuntia dillenii 
contained 117 ± 10 and 45.2 ± 7.4 mg/100 g of total phenolics respectively (Diaz Media 
et al., 2007). 
Conjugated flavonoids (quercetin, kaempferol and isorhamnetin), ascorbic acid and 
carotenoids were estimated from the fruit extracts of O. ficus indica (green-skinned), O. 
lindheimeri (purple-skinned), O. streptacantha (red-skinned) and O. stricta var. stricta 
(yellow-skinned). Quercetin was the most abundant in all varieties whereas kaempferol 
was found in green-skinned, purple-skinned and red-skinned varieties and isorhamnetin 
in green-skinned and purple-skinned varieties. Flavonols, total flavonoids, ascorbic acid 
and carotenoids content of four species are summarized in (Table 2.14) (Kuti, 2004).  
 
 
60

                                                                                                           Review of Literature 
Table 2.14: Flavonols, total flavonoids, ascorbic acid and total carotenoids content 
(µg/g fresh weight) in fruits of different Opuntia spp. 
Flavonol content 
Opuntia spp. 
Quercetin Kaempferol Isorhamnetin
Total 
Flavonoids 
Ascorbic 
acid 
Total 
Carotenoids
O. ficus-indica 
43.2 ± 2.5 
2.2 ± 0.3 
24.1 ± 1 
69.5 ± 3.8 
458 
2.9 
O. lindheimeri 
90.5 ± 11.5  1.1 ± 0.4 
1.9 ± 0.5 
93.5 ± 12.4  121 
6.7 
O. streptacantha  51.0 ± 4.6 
3.8 ± 0.5 
ND 
54.8 ± 5.1 
815 
14.6 
O. stricta var. 
stricta 
9.8 ± 3.0 
ND 
ND 
9.8 ± 3.0 
437 
23.7 
ND = Not Detectable 
 
 Eun Ha Lee et al. (2003) isolated and identified eight flavonoids namely kaempferol, 
quercetin, kaempferol 3-methyl ether, quercetin 3-methyl ether, narcissin, aromadendrin, 
toxifolin and eriodictyol by means of chemical and spectroscopic method for the first 
time from the fruits of O. ficus indica var. saboten. The flavonoids quercetin, (1)-
dihydroquercetin and quercetin 3-methyl ether were isolated from the ethyl acetate 
fractions of the fruits and stems of Opuntia ficus-indica var. saboten and evaluated their 
protective effects against oxidative neuronal injuries induced in primary cultured rat 
cortical cells and their antioxidant activities by using three different cell-free bioassays 
(Jungsook Cho et al., 2003).  
 
Pigments 
The most common connotation with pigmented flower petals and fruits is the attraction of 
animals both for pollination and seed dispersal. Anthocyanins mask the chlorophyll 
containing organelles and thereby protect chloroplasts against high light intensities to 
prevent photo inhibition (Stintzing & Carle, 2004). Chalker-Scott (1999) suggested, three 
functions of anthocyanins in plants, namely as absorbers of harmful radiation, as 
transport vehicles for monosaccharides and as osmotic adjusters during periods of 
drought and low temperature. The anthocyanins are a subgroup within the flavonoids 
characterized by a C
6
-C
3
-C
6
 skeleton. Different aglycones and anthocyanins with 
 
61

                                                                                                           Review of Literature 
structures and absorption maxima in acidified methanol are summarized in table 2.15 
(Stintzing & Carle, 2004).  
 
Table 2.15: Basic structure of anthocyanins and their absorption maxima. 
 
Anthocyanin R
3
R
3’
R
5’
λ 
max
 (nm) 
O
O
H
OH
OR
3
R
3
'
OH
R
5
'
A
B
C
+
Pelargonidin 

H H 520 
Cyanidin H 
OH 

535 
Delphinidin 

OH OH 546 
Peonidin H 
OCH
3
H 532 
Petunidin H 
OCH
3
OH 543 
Malvidin H 
OCH
3
OCH
3
542 
Pelargonidin-3-glycoside 
Glucose 
H H 516 
Cyanidin-3-glycoside  
Glucose 
OH 

530 
Delphinidin-3-glycoside 
 
Glucose OH OH 543 
Peonidin-3-glycoside  
Glucose 
OCH
3
H 536 
Petunidin-3-glycoside  
Glucose 
OCH
3
OH 546 
Malvidin-3-glycoside  
Glucose 
OCH
3
OCH
3
546 
 
Betalains are of great taxonomic significance in higher plants. The presence of betalains 
in members of the order Caryophyllales has been an important criterion for their 
classification. The presence of betalains and anthocyanins is mutually exclusive in the 
angiosperms. Betalains are water soluble nitrogenous chromoalkaloids and can be 
divided into two major structural groups, (i) The red to red-violet betacyanin (Latin Beta
beet and Greek kyanos; blue color) and (ii) The yellow betaxanthins (Latin Beta and 
Greek  xanthos; yellow color). Betalains may function as osmolytes to uphold 
 
62

                                                                                                           Review of Literature 
physiological processes, stabilize subcellular structures, reduce nitrogen toxicity and be 
an excellent radical scavenger. Structurally, betacyanins are characterized by a cyclo – 
Dopa structure with additional substitutions through varying glycosylation and acylation 
patterns at C
5
 or C
6
 whereas the betaxanthins are condensation products of betalamic acid 
and various amino compounds. Betacyanins can be further classified by their chemical 
structures into four types: betanin-type, amaranthin-type, gomphrenin-type and 
bougainvillein-type (Stintzing & Carle, 2004; Yi-Zhong Cai, 2005). Structures of 
betacyanins and betaxanthins found in the fruits of different Opuntia spp. are summarized 
in figure 2.16. 
 
The biosynthetic steps involved in betalain biosynthesis are summarized in f
igure 2.17.
 
While some ‘early’ and ‘late’ reactions are enzymatically catalysed, the intermediate 
steps (cyclizations, X–XIII; aldimine formation, XIV–XVIII) are assumed to proceed 
spontaneously, i.e. formation of cyclo-dopa via dopaquinone, betalamic acid via 4,5-
seco-dopa, muscaflavin via 2,3-seco-dopa and the condensations of betalamic acid with 
cyclo-dopa (betanidin formation) or amino acids/amines (betaxanthin formation). Early 
reactions are catalysed by the bifunctional tyrosinase (EIA, EIB) and the dopa 4,5- or 2,3-
dioxygenase (EII, EIII), and late reactions by glucosyl-(EIV, EV), hydroxycinnamoyl-
(EVI) and malonyltransferases (EVII). In addition, there are two rare enzymatic steps 
(decarboxylation and methylation, EVIII, EIX) leading to dopamine-derived betalains 
(Strack et al., 2003).  
 
 
 
63

                                                                                                           Review of Literature 
N
N
H
R
5
O
O
H
H
H
COOH
COOH
HOOC
N
N
H
R
5
O
O
H
H
COOH
COOH
H
HOOC
N
N
H
R
5
O
O
H
H
COOH
COOH
HOOC
N
H
O
H
COOH
HOOC
N
H
COOH
HOOC
N
R'
R
+
15
Betanin              ß-Glucose
Phyllocactin       6'-O-(Malonyl)-ß-glucose
R
5
+
15
+
15
Isobetanin          ß-Glucose 
Neobetanin
R
5
R
5
      ß-Glucose
Betacyanins

Yüklə 7,99 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   19




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.azkurs.org 2020
rəhbərliyinə müraciət

    Ana səhifə