2.6. Кombinator tenglamalar
2.6.0.
|
|
2.6.1.
|
|
2.6.2.
|
|
2.6.3.
|
|
2.6.4.
|
|
2.6.5.
|
|
2.6.6.
|
|
2.6.7.
|
|
2.6.8.
|
|
2.6.9.
|
|
2.6.10.
|
|
2.6.11.
|
|
2.6.12.
|
|
2.6.13.
|
|
2.6.14.
|
|
2.6.15.
|
|
2.6.16.
|
|
2.6.17.
|
|
2.6.18.
|
|
2.6.19.
|
|
2.6.20.
|
|
2.6.21.
|
|
2.6.22.
|
|
2.6.23.
|
|
2.6.24.
|
|
2.6.25.
|
|
2.6.26
|
|
2.6.27
|
|
2.6.28
|
|
2.6.29
|
|
0-topshiriqning ishlanishi.
2.6.0.
Tenglamani yechish uchun , va x birdan katta natural son bo‘lishi mumkinligini e’tiborga olib, tenglamada qatnashgan mos koeffitsiyentlarni yuqoridagi formulalarga asoslanib yoyib chiqamiz:
Soddalashtiramiz, surat va maxrajlarda qisqarishi mumkin bo‘lgan faktoriallarni qisqartiramiz.
Tenglamaning ikkala tomonini x*(x+1) ga qisqartiramiz, 12 bilan 4!=1*2*3*4=24 ni qisqartirib, tenglamada ayrim shakl almashtirishlarni amalgam oshirib, quyidagi ko‘rinishga olib kelamiz:
;
.
Kvadrat tenglama yechimlari x1=-13 bizning shartni (x>1) bajarmaydi Ø, x2=8 yechim esa kombinator tenglamamiz yechimi bo‘ladi.
1.4. Mantiq funksiyalari uchun chinlik jadvalini tuzish
Ta’rif 1. α formulaning barcha mantiqiy imkoniyatlari va bu mantiqiy imkoniyatlardagi α formulaning qiymatlari keltirilgan jadvaliga rostlik (chinlik) jadvali deyiladi.
Masalan α(A, B, C)= ⌐(A&B)→(A\/B~C) formulaning rostlik jadvalini topish uchun, amallar bajarilish ketma-ketligi:
1) qavs ichidagi amal 2) ⌐ 3) & 4) \/ 5) ~ → e’tiborga olinib birin-ketin amallar bajariladi va formulaning rostlik jadvali topiladi.
A
|
B
|
C
|
A&B
|
⌐ (A&B)
|
A\/B
|
A\/B~C
|
α(A, B, C)= ⌐(A&B)→(A\/B~C)
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
Quyidagi mantiq algebrasi funksiyalari uchun rostlik jadvallarini tuzing;
F(A,B,C)= AB(AC)
F(A,B,C)=C→(AB)
F(A,B,C)=A&B→(AB)
F(A,B,C)=(A&B&C)(A B)
F(A,B,C)=(AC)B
F(A,B,C)=(A→B)→C
F(A,B,C)=(A→B)(B→C)
F(A,B,C)=A(B→C)B
F(A,B,C)=(A&BC)
F(A,B,C)=(AB)(BC)
F(A,B,C)=(A→C)B
F(A,B,C)=(BC)→(AC)
F(A,B,C)=A→(BC)
F(A,B,C)=(A→B)(B→A)C
F(A,B,C)=CAB
F(A,B,C)=A(ABC)(AC)
F(A,B,C)=(AB)(BAC)
F(A,B,C)=A(BA)(AC)
F(A,B,C)=(A→B)&A&C
F(A,B,C)=(A&B)→(C&A)
F(A,B,C)=(A&BC)&A&C
F(A,B,C)=(A&BA&B)&(C→B)
F(A,B,C)=(AB CABC)AB
F(A,B,C)=(A→B)&(C→A)
F(A,B,C)=(AB&CA&C)&B
F(A,B,C)=(ABC)→AC
F(A,B,C)=(AB)→(CBA)
F(A,B,C)=(A→B)(CA)
F(A,B,C)=(AB)(CB)
F(A,B,C)=((AB)C)→A((BC)(AC)
Dostları ilə paylaş: |