Reja: Monoton funksiyalarning uzluksizligi va uzilish nuqtasi. Uzluksiz funksiyaning nolga aylanishi haqidagi teorema. Uzluksiz funksiyaning oraliq qiymatlari haqidagi teorema Teskari funksiyaning mavjudligi va uzliksizligi


Uzluksiz funksiyaning oraliq qiymatlari haqidagi teorema



Yüklə 424,5 Kb.
səhifə3/6
tarix28.02.2023
ölçüsü424,5 Kb.
#85901
1   2   3   4   5   6
matematika nnnn

2. Uzluksiz funksiyaning oraliq qiymatlari haqidagi teorema


Teorema. (Bolsano-Koshining ikkinchi teoremasi)Agar f(x) funksiya [a;b] segmentda uzluksiz bo`lib, f(a)=A, f(b)=B va A<B bo`lsa, u holda A<C<B ni qanoatlantiruvchi har qanday C son uchun shunday c (a;b) son topilib, f(c)=C bo`ladi.
Isbot. Yordamchi (x)=f(x)-C funksiyani olamiz. (x) Bolsano-Koshining birinchi teoremasining barcha shartlarini qanoatlantiradi. Haqiqatan, 1) (x) funksiya [a;b] da uzluksiz, chunki f(x) funksiya [a;b] da uzluksizdir.
2) (a)=f(a)-C<0, (b)=f(b)-C>0.
Shuning uchun (a;b) da shunday c nuqta topiladiki, (c)=0, yoki f(c)-C=0, ya`ni f(c)=C bo`ladi.
Demak, [a;b] da uzluksiz bo`lgan funksiya o`zining ikki qiymati orasidagi barcha qiymatlarni qabul qiladi.
Natija. Agar f(x) funksiya X oraliqda aniqlangan va uzluksiz bo`lsa, uning qiymatlari biror Y oraliqni tutash to`ldiradi.
Teorema. (Veyershtrassning birinchi teoremasi).
Agar f(x) funksiya [a;b] segmentda aniqlangan va uzluksiz bo`lsa, funksiya shu segmentda chegaralangan bo`ladi.
Isbot. Teoremani teskaridan faraz qilish orqali isbotlaymiz. Faraz qilaylik f(x) funksiya yuqoridan chegaralanmagan bo`lsin. U holda ixtiyoriy n son uchun f(xn)>n ni qanoatlantiradigan xn [a;b] nuqta topiladi. Bolsano-Veyershtrass teoremasiga binoan (xn) ketma-ketlikdan yaqinlashuvchi ( ) qismiy ketma-ketlik ajratib olish mumkin. = [a;b] deylik. Funksiya uzluksiz bo`lganligi uchun f(x ) f( ) bo`ladi. Ikkinchi tomondan f( )>nk dan f( ) kelib chiqadi. Bu qarama-qarshilik farazimizning noto`g`ri ekanligini ko`rsatadi.
Eslatma: Teoremadagi har bir shart muhim bo`lib, ularning birortasi bajarilmasa teoremaning xulosasi ham o`rinli bo`lmasligi mumkin.
Misol. y=tgx funksiya (- ) da uzluksiz, lekin chegaralanmagan.
Misol. f(x)= funksiya [0;1] da aniqlangan, lekin chegaralanmagan.
Teorema. (Veyershtrassning ikkinchi teoremasi).
Agar f(x) funksiya [a;b] segmentda aniqlangan va uzluksiz bo`lsa, funksiya shu segmentda o`zining aniq quyi va aniq yuqori chegaralariga yerishadi.
Isbot. Teoremaning xulosasini quyidagicha aytish mumkin, ya`ni [a;b] segmentda shunday x1 va x2 nuqtalar topiladiki, f(x1)= {f(x)}, f(x2)= {f(x)} bo`ladi (ya`ni f(x1) - f(x) funksiyaning [a;b] segmentdagi eng katta qiymati, f(x2) esa eng kichik qiymati).
f(x) funksiya [a;b] da uzluksiz bo`lgani uchun Veyershtrassning birinchi teoremasiga binoan f(x) [a;b] da chegaralangan, demak aniq yuqori va aniq quyi chegaralarga ega:
{f(x)}=M , {f(x)}=m deylik.
Endi [a;b] da biror x1 nuqtasi uchun f(x1)=M bo`lishini ko`rsatamiz. Teskarisini faraz qilaylik, ya`ni barcha x [a;b] larda f(x)<M bo`lsin.
funksiyani tuzib olaylik. (x) funksiya [a;b] segmentda uzluksiz, Veyershtrassning birinchi teoremasiga binoan u quyidan chegaralangan bo`ladi, ya`ni shunday >0 son topilib, (x)  bo`ladi. Bundan f(x)< M- bo`lib, M- f(x) funksiyaning yuqori chegarasi ekanligi kelib chiqadi. Bu qarama-qarshilik farazimizning noto`g`ri ekanligini ko`rsatadi.
Eslatma. Teoremadagi har bir shart muxim bo`lib, ularning birortasi bajarilmasa uning xulosasi ham o`rinli bo`lmasligi mumkin.
Misol. f(x)=x-[x] funksiya ixtiyoriy b 1 uchun [a;b] segmentda qiymatlar to`plami E(f)=[0;1) bo`lib, [a;b] da o`zinig yuqori chegarasiga erishmaydi.

Yüklə 424,5 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin