80
81
funksiyasi bo‘ladi, chunki
F
′(
x
)
=
(ln
x
)′
=
1
x
.
1-masala.
F
1
4
1
( )
,
4
x
F x
=
4
2
( )
17,
4
x
F x
=
+
4
3
( )
25
4
x
F x
=
−
funksiyalar ayni
bir
f
(
x
)
=x
3
funksiyaning boshlang‘ich funksiyalari ekanini isbotlang.
Hosilalar jadvaliga muvofiq yoza olamiz:
1)
F
4
3
1
3
1
( ) ( )
4
( ).
4
4
x
x
F x
x
f x
′
=
= ⋅
=
=
ʹ
4
3
1
3
1
( ) ( )
4
( ).
4
4
x
x
F x
x
f x
′
=
= ⋅
=
=
;
2)
F
4
3
3
1
3
2
( ) (
17)
( ) (17) 4
0
( ).
4
4
4
x
x
x
F x
x
f x
′
′
′
=
+
=
±
= ⋅
+ +
=
ʹ
4
3
3
1
3
2
( ) (
17)
( ) (17) 4
0
( ).
4
4
4
x
x
x
F x
x
f x
′
′
′
=
+
=
±
= ⋅
+ +
=
+
x
3
=
f
(
x
);
3)
F
4
4
3
1
3
3
( ) (
25)
( ) (25) 4
0
( ).
4
4
4
x
x
x
F x
x
f x
′
′
′
=
−
=
−
= ⋅
+ +
=
ʹ
4
4
3
1
3
3
( ) (
25)
( ) (25) 4
0
( ).
4
4
4
x
x
x
F x
x
f x
′
′
′
=
−
=
−
= ⋅
+ +
=
– 0 =
x
3
=
f
(
x
).
Bu masaladan shunday xulosaga kelish mumkin: ixtiyoriy
F
(
x
) =
4
( )
4
x
F x
C
+
funksiya (
C
– biror o‘zgarmas son) ham
f
(
x
)
= x
3
uchun boshlang‘ich funksiya
bo‘la oladi. Chindan ham,
4
4
3
3
( ) (
) ( )
4
0
( )
4
4
4
x
x
x
F x
C
C
x
f x
′
′
′
′
=
+
=
+
= ⋅
+ =
=
.
▲
Bu masaladan yana shunday xulosaga kelish mumkin: berilgan
f
(
x
) funksiya uchun uning boshlang‘ich funksiyasi bir qiymatli aniqlan-
maydi.
Agar
F
(
x
) funksiya
f
(
x
) ning biror oraliqlari boshlang‘ich funksiyasi
bo‘lsa,
f
(
x
) funksiyaning barcha boshlang‘ichlari
F
(
x
)
+C
(
C
– ixtiyoriy
o‘zgarmas son) ko‘rinishida yoziladi.
F
(
x
)
+C
ko‘rinishidagi barcha funksiyalar to‘plami
f
(
x
) ning
aniqmas
integrali
deyiladi va
( )
f x dx
∫
kabi belgilanadi.
Demak,
( )
( )
.
f x dx F x C
=
+
∫
∫
– integral belgisi,
f
(
x
)
– integral ostidagi funksiya,
f
(
x
)
dx
esa integral
ostidagi ifoda deyiladi.
5-misol.
ln
x
x
a
a dx
C
a
=
+
∫
, chunki hosilalar jadvaliga ko‘ra,
1
1
(
) ( )
ln
0
.
ln
ln
ln
x
x
x
x
a
C
a
C a
a
a
a
a
a
′
′
′
+
=
⋅
+
=
⋅
⋅
+ =
1
1
(
) ( )
ln
0
.
ln
ln
ln
x
x
x
x
a
C
a
C a
a
a
a
a
a
′
′
′
+
=
⋅
+
=
⋅
⋅
+ =
80
81
6-misol.
1
,
1
k
k
x
x dx
C
k
+
=
+
+
∫
1,
k
≠ −
chunki
1
1
1
1
(
)
(
)
0
.
1
1
1
k
k
k
k
x
k
C
x
x
x
k
k
k
+
+
+
′
′
+
=
⋅
=
⋅
+ =
+
+
+
+
C
ʹ=
1
1
1
1
(
)
(
)
0
.
1
1
1
k
k
k
k
x
k
C
x
x
x
k
k
k
+
+
+
′
′
+
=
⋅
=
⋅
+ =
+
+
+
k
= – 1 bo‘lsa,
x
> 0 da 4-misolga ko‘ra,
ln
.
dx
x C
x
=
+
∫
y=F
(
x
)
+C
funksiyaning grafigi
y=F
(
x
) funksiya grafigini
Oy
o‘q
bo‘ylab siljitishdan hosil qilinadi (1-rasm). O‘zgarmas son
C
ni tanlash
hisobiga boshlang‘ich funksiya grafigining berilgan nuqta orqali o‘tishiga
erishish mumkin.
O
1-rasm.
2-masala.
f
(
x
)
=x
2
funksiyaning grafigi
A
(3; 10) nuqtadan o‘tadigan
bosh lang‘ich funksiyasini toping.
f
(
x
)
=x
2
funksiyaning barcha boshlang‘ich funksiyalari
3
( )
3
x
F x
C
=
+
ko‘rinishda
bo‘ladi, chunki
3
2
2
2
1
( ) (
)
3
0
.
3
3
x
F x
C
x
C
x
x
′
′
′
=
+
= ⋅
+
=
+ =
O‘zgarmas son
C
ni
3
( )
3
x
F x
C
=
+
funksiyaning grafigi (3; 10) nuq-
tadan o‘tadigan qilib tanlaymiz:
x
=3 da
F
(3)=10 bo‘lishi kerak. Bundan
82
83
3
3
10
3
C
=
+
,
1.
C
=
Demak, izlanayotgan boshlang‘ich funksiya
3
( )
1
3
x
F x
=
+
bo‘ladi.
Javob:
3
1.
3
x
+
▲
3-masala.
3
( )
f x
x
=
funksiyaning grafigi
A
(8;15) nuqtadan o‘tadigan
boshlang‘ich funksiyasini toping.
3
( )
f x
x
=
ning barcha boshlang‘ich funksiyalari
3 4
( )
4 3
F x
x
C
= ⋅
+
4
3
3
x
x x
=
+ C
ko‘ri nishida bo‘ladi, chunki
4
4
1
1
3
3
3
3
3
3
3
3 4
( )
( )
0
.
4
4
4 3
F x
x
C
x
C
x
C
x
x
′
′
′
′
′
=
⋅
+
=
+
= ⋅ ⋅
+
=
+ =
O‘zgarmas son
C
ni shunday tanlaymizki,
4
3
3
( )
4
F x
x
C
=
+
funksiyaning
grafigi
A
(8, 15) nuqtadan o‘tsin, ya’ni
F
(8)=15 tenglik bajarilsin.
4
3
3
x
x x
=
ekanidan
3
3
15
8 8
,
4
C
= ⋅ ⋅
+
bundan
C
=3. Demak, izlanayotgan boshlang‘ich
funksiya
3
3
( )
3
4
F x
x x
=
+
bo‘ladi.
Javob:
3
3
3.
4
x x
+
▲
4*-masala.
ln
C
dx
x
x
=
+
∫
C
ekanini ko‘rsating.
x
> 0 da
ln
C
dx
x
x
=
+
∫
x+C
, chunki (ln
x
+
C
)′=
1
x
+ 0 =
1
x
;
x
< 0 da
ln( ) C
dx
x
x
=
− +
∫
C
, chunki (ln(–
x
)+
C
)′=
( )
( )
1
x
−
−
+0=
1
x
.
▲
?
Savol va topshiriqlar
1. Boshlang‘ich funksiya nima? Misollar keltiring.
2.
Berilgan
f
(
x
) funksiya uchun boshlang‘ich funksiya bir qiymatli
topiladimi? Nima uchun?
3. Boshlang‘ich funksiya
F
(
x
) ning grafigini berilgan nuqtadan o‘tishiga
qanday qilib erishish mumkin? Misolda tushuntiring.
82
83
Mashqlar
1.
Haqiqiy sonlar to‘plami
R
=(–
∞
;
∞
) da
f
(
x
) funksiya uchun
F
(
x
)
funksiyaning boshlang‘ich funksiya ekanini isbotlang:
1)
F
(
x
)=
x
2
–sin2
x
+2018,
f
(
x
) = 2
x
–2cos2
x
;
2)
3
( )
cos
28,
2
x
F x
x
= −
− +
2
1
( )
sin
3 ;
2
2
x
f x
x
=
−
3)
F
(
x
) = 2
x
4
+cos
2
x
+3
x
,
f
(
x
) = 8
x
3
–sin2
x
+3;
4)
F
(
x
)=3
x
5
+sin
2
x
–7
x
,
f
(
x
)=15
x
4
+sin2
x
–7.
Quyidagi funksiyalarning barcha boshlang‘ich funksiyalarini, hosilalar
jadvalidan foydalanib toping (
2 – 6
):
2.
1)
2
( )=
;
f x x
x
⋅
2)
f
(
x
)=6
x
5
; 3)
f
(
x
)=
x
10
; 4)
2
( )=
;
3
f x
x
⋅
5)
f
(
x
)=sin
x
; 6)
f
(
x
)=cos
x
; 7)
f
(
x
)=sin2
x
; 8)
f
(
x
)=cos2
x
;
3.
1)
f
(
x
)=4
x
; 2)
f
(
x
)= π
x
; 3)
f
(
x
)=
e
x
; 4)
f
(
x
)=
a
x
;
5)
f
(
x
)=
a
2
x
; 6)
f
(
x
)=
e
π
x
; 7)
f
(
x
)=10
3
x
; 8)
f
(
x
)=
e
2
x
+3
.
4.
1)
1
( )
;
2
3
f x
x
=
+
2)
1
( )
;
4 5
f x
x
=
−
3)
1
( )
;
2
7
f x
x
=
+
4)
1
( )
f x
ax
=
;
5)
1
( )
;
f x
ax b
=
+
6)
( )
.
a
f x
ax b
=
−
5.
1)
f
(
x
)=sin3
x
; 2)
f
(
x
)=sin(2
x
+5); 3)
f
(
x
)=sin(4
x
+π);
4)
f
(
x
)=cos5
x
; 5)
f
(
x
)=cos(3
x
–2); 6)
( ) cos(2
)
f x
x
z
π
=
+
2
π
).
6.
1)
2
1
( )
;
f x
x
=
2)
5
1
( )
;
f x
x
=
3)
2
( ) (3
2) ;
f x
x
=
+
4)
3
( ) (2 1) .
f x
x
=
−
7.
Berilgan
f
(
x
) funksiya uchun uning ko‘rsatilgan
A
nuqtadan o‘tuvchi
boshlang‘ich funksiyasini toping:
1)
f
(
x
)=2
x
+3,
A
(1; 5); 2)
f
(
x
)=–
x
2
+2
x
+5,
A
(0; 2);
3)
f
(
x
)=sin
x
,
A
(0; 3); 4)
f
(
x
)=cos
x
,
( ; 5)
2
A
π
.
|