116 . a) 200; b) 192; c) 432; d) 320; e) 400; f) 1152.
117 . a) 288; b) 24; c) 480; d) 388800.
118 . 88.
119 . Yechish. Masala sharti bo’yicha,
a = 3
α
5
β
7
ϒ
. Bu soning Eyler funksiyasi
ϕ
(
a ) = 3
α
-1
⋅
2
⋅
5
β
-1
4
⋅
7
ϒ
-1
⋅
6 = 2
4
3
α
-1
5
β
-1
7
γ
-1
. shart bo’yicha
ϕ
(
a ) = 3600 = =2
4
⋅
3
2
⋅
5
2
, demak 2
4
⋅
3
α
⋅
5
β
-1
⋅
7
γ
-1
= 2
4
⋅
3
2
⋅
5
2
, bundan
α
= 2,
β
= 3,
γ
=1 va
a = 3
2
⋅
5
3
⋅
7 = 7875.
120 . Yechish. Shart bo’yicha:
ϕ
(
a ) =
ϕ
(
pq ) =(
p - 1) (
q – 1) = 120 va
p -
q = 2. Natijada
(
)(
)
;
2
120
1
1
=
−
=
−
−
q p q p sistemani hosil qilamiz. Uning yechimi
p = 13,
q = 11. Demak,
a =
p q = 143.
121 . Yechish. Shart bo’yicha
( )
(
)
(
) (
)
1
1
2
2
−
−
=
=
q q p p q p a ϕ
ϕ
va
( )
.
17
7
3
2
11424
5
⋅
⋅
⋅
=
=
a ϕ
Demak,
(
) (
)
,
17
7
3
2
1
1
5
⋅
⋅
⋅
=
−
−
q q p p yoki
(
) (
)
,
6
7
16
17
1
1
⋅
⋅
⋅
=
−
−
q q p p bundan
7
,
17
=
=
q p va
14161
7
17
2
2
=
⋅
=
a .
122 .
Yechish. Shart bo’yicha
( )
(
)
(
)
(
)
1
...
1
1
1
2
1
2
1
1
1
2
1
−
−
−
=
−
−
−
n n p p p p p p a n α
α
α
ϕ
va
( )
.
11
7
5
3
2
462000
3
4
⋅
⋅
⋅
⋅
=
=
a ϕ
Demak,
(
)
(
)
(
)
11
7
5
3
2
1
...
1
1
3
4
1
2
1
2
1
1
1
2
1
⋅
⋅
⋅
⋅
=
−
−
−
−
−
−
n n p p p p p p n α
α
α
.
O’ng tomondagi ko’paytuvchilarni chap tomondagi kabi ko’rinishda
ko’paytuvchilarni o’rnini almashtiramiz:
(
)
(
)
(
) (
)( )
(
)
,
4
5
6
7
10
11
1
...
1
1
2
1
2
1
2
2
1
1
1
1
⋅
⋅
⋅
=
−
−
−
−
−
−
n n n p p p p p p α
α
α
bundan
11
1
=
p va
7
;
2
2
1
=
=
p α
va
5
;
2
3
2
=
=
p α
va
;
3
3
=
α
.
741125
5
7
11
3
2
2
=
⋅
⋅
=
a
71
123 . Yechish. (
a, m )=1 shart bajarilganda (
a, m-a ) = 1 ni bajarilishini
ko’rsatamiz. Teskarisini faraz qilamiz, ya’ni (
a, m - a ) =
d > 1, u holda
a =
dk ,
m – a =
dt , bundan
m =
d (
t +
k ) va (
a ,
m ) =
d > 1, bu esa (
a, m )= 1 shartga ziddir.
m dan kichik va u bilan tub bo’lgan sonlarni tartib bilan yozamiz:
1,
a 1
,
a 2 , …,
m –
a 2
,
m –
a 1
,
m – 1; bu qatorda
ϕ
(
m ) son bor. Har qanday
a i songa
m – a i son mos keladi; ular yig’indisi
a i + (
m -
a i ) =
m , bu juftliklar soni
( )
m ϕ
2
1
va demak
( )
.
2
1
m m S ϕ
=
124 . a) 24; b) 54; c) 37500.
125 . a)
Yechish. .
...
2
1
2
1
k x k x x p p p a =
bo’lsin. U holda
( )
( )
.
1
1
...
1
1
1
1
1
1
...
1
1
1
1
1
2
1
1
2
1
a a p p p a a p p p a a k k ϕ
ϕ
α
α
α
α
−
−
=
=
−
−
−
=
−
−
−
=
126 . Birinchi hol (
a , 2) = 1 bo’lganda o’rinli, ikkinchi hol esa (
a , 2) = 2
bo’lganda o’rinli bo’ladi.
127 . a)
Yechish. ϕ
(4
n + 2) =
ϕ
(2)
ϕ
(2
n + 1) =
ϕ
(2
n + 1);
b)
Yechish. Agar (
n , 2)=1 bo’lsa, u holda
ϕ
(4
n ) =
ϕ
(4)
ϕ
(
n ) = 2
ϕ
(
n ). Agar
n = 2
α
⋅
k bo’lib, (
k , 2) = 1 bo’lsa, u holda
ϕ
(4
n ) =
ϕ
(2
α
+2
⋅
k ) = 2
α
+1
⋅ϕ
(
k ) = 2
⋅ϕ
(2
α
+1
⋅
k ) = 2
ϕ
(2
n ).
128 . a)
x = 3; b)
x = 3; c) tenglama
p > 2 da yechimga ega emas.
p = 2 da ixtiyoriy natural sonlar uchun o’rinli.
129 .
ϕ
(
b ).
130 . a) 4 kasr:
.
10
9
.
10
7
,
10
3
,
10
1
c) 12 kasr.
131 .
ϕ
(2) +
ϕ
(3) +…+
ϕ
(
n ).
132 . a) 9; b) 31; c) 71.
133 . Yechish. Shart bo’yicha, (300,
x ) = 20 va barcha
x lar 300 dan kichik, 20
ga qisqartirgandan so’ng (15,
y ) = 1, bu yerda barcha
y Lar 15 dan kichik va 15 bilan
o’zaro tub; ular soni
ϕ
(15) = 8. Bu
y = 1, 2, 4, 7, 8, 11, 13, 14 sonlar va bundan
x =
20, 40, 80, 140, 160, 220, 260, 280.
134 .
ϕ
(45) = 24.
135 .
ϕ
(36) = 12.
136 . Ko’rsatma. ϕ
(
a ) ning juftligi 123 masala yordamidan kelib chiqadi.
137 . Yechish. Agar (
m , 2) = 1 bo’lsa, u holda
ϕ
(
m ) =
ϕ
(2
m ).
138 . Yechish. m va
n larning tub bo’luvchisi
p uchun
ϕ
(
mn ) sonda
,
1
1
p −
ko’paytuvchi bor, a
ϕ
(
m )
ϕ
(
n ) – sonida esa
.
1
1
2
−
p ko’paytuvchi bor.
,
1
1
1
<
−
p bo’lganligi sababli
ϕ
(
m )
ϕ
(
n ) <
ϕ
(
mn ). Xususiy holda
ϕ
2
(
m )
≤
ϕ
(
m 2
), tenglik
m = 1
bo’lganda bajariladi.
72
139 . Ko’rsatma. q 1
,
q 2
,…,
q t –
m ning kanonik yoyilmasidagi tub sonlar;
p 1
,
p 2
,…,
p k –
m va
n ning kanonik yoyilmasidagi tub sonlar va
−
S l
l
l
,...,
,
2
1
faqat
n ning kanonik yoyilmasidagi tub sonlar bo’lsin. U holda
( )
( ) ( ) ( )
.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
d d n m p d d p n p q m p q mn mn k i i k i S i i i k i i t i i k i S i i i t i i ϕ
ϕ
ϕ
ϕ
=
∏
−
⋅
⋅
∏
∏
−
−
×
×
∏
−
∏
⋅
−
=
∏
∏
−
⋅
−
∏
⋅
−
=
=
=
=
=
=
=
=
=
l
l
1
-eslatma . Shu usulda
m va
n sonlarning umumiy bo’luvchisi
A uchun
( ) ( ) ( ) ( )
A A n m mn ϕ
ϕ
ϕ
ϕ
=
munosabatni keltirib chiqarish mumkin.
2-
eslatma. Chiqarilgan formula yordamida 138 masala yechimi juda osonlik
bilan topiladi:
( ) ( )
( )
,
mn n m ϕ
ϕ
ϕ
≤
chunki
( )
1
≥
α
ϕ
d . Tenglik o’rinli bo’lishi uchun
d = 1 zarur va yetarlidir.
140 . Yechish. ( )
( )
( ) ( )
( )
.
µ
δϕ
γ
δ
µ
ϕ
δ
ϕ
δµ
ϕ
ϕ
τ
=
⋅
=
=
mn 141 .
p α
.
142 .
m. 144 . a)
Yechish . Gaussa formulasidan
x = 2
y 3
z 5
u (
y ≥
0,
z = 0; 1 va
U = 0; 1) kelib chiqadi.
x = 2
y ; 2
y ⋅
3; 2
y ⋅
5; 2
y ⋅
15; 3; 5; 15 imkoniyatlarni tek-
shirishi
x = 2
α+1
; 2
α
⋅
3; 2
α
-1
⋅
5; 2
α
-2
⋅
15 (
α
≥
2); 15 (
α
= 3)larni beradi;
b)
p ≠
3 da yechim yo’q.
r = 3 da tenglamalarni ixtiyoriy butun
x ≥
2 qiymat-
lar qanoatlantiradi.