MUXAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI S AMARQAND FILIALI
KOMPYUTER TIZIMLARI KAFEDRASI Axborot Xavfsizligi ta'lim yo'nalishi “Mashinali o’qitishga kirish” fanidan
MUSTAQIL talim № 2
Mavzu: Ko’p o’zgaruvchili chiziqli regressiya (Stoxastik gradiyent tushush)
Bajardi: 3-kurs talabasi Nabiyev G’.
Qabul qildi: Kubayev S.T.
Ishni bahosi: ___________ ball
Samarqand – 2022
Mavzu rejasi:
1. Faol tajribani rejalashtirish.
2. Ko’p o’zgaruvchili chiziqli regressiya uchun kichik kvadratlar usuli.
3. Gradiyent tushish usuli.
4. Asosiy xulosalar.
Tayanch iboralar: Faol tajriba, optimal xossalar, statistik usullar, strategiya, intuisiya, sxema, matrisasini ko’rish, faktorlar, ko’p faktorli rejalashtirish, sathlar kombinasiyalari, uzluksiz, chiziqsiz, faktorli fazo, sirt, ekstremal qiymatlar, modellashtirish, randomizasiya, algoritm (algorithm), texnik-iqtisodiy shart, interval, optimallashtirish, axborot, yuqori chegara , yelka, past aniqlik, sirtning egriligi, kodlash, dispersiya, Stpyudent alomati, normal qonun, Kochren mezoni, Fisher mezoni, eng kichik kvadratlar usuli, qizil chiziq, ko’k chiziq, firma, qiyalik, standart chetlanish, gradiyent tushish usuli, kosinus, Gauss shovqini, beta-versiya, Nesterov impulsi( Nesterov Impulse ), stoxastik gradiyent tushish, darcha, momentum, Python algoritmi.
1. Faol tajribani rejalashtirish
Tajribani rejalashtirish - ma’lum optimal xossalarga ega bo’lgan sinovlarni oldindan tuzilgan sxema bo’yicha yo’lga qo’yishdir.
Ilgari matematik - statistik usullar faqat tajriba natijalarini qayta ishlashda qo’llanilgan bo’lib, tajriba o’tkazish strategiyasini tanlash tadqiqodchining intuisiyasi bo’yicha aniqlanar edi. Hozirgi davrda tajriba o’tkazish sxemasini tuzish, tajriba natijalarini tahlil qilishda tajribani rejalashtirish deb atalgan matematik statistik usullar qo’llaniladi. Bunda tadqiqotchining tajribaviy bilimlari ham hisobga olinadi.
Tajribani rejalashtirishda ikkita - zaruriy tajribalar sonini aniqlash, ya’ni rejalashtirish matrisasini qurish va natijalarni qayta ishlashning matematik usullarini tanlashmasalasi yechiladi.
Tajribani rejalashtirish matrisasi faktorlarning har xil qiymatlari va tajriba natijalaridan tuzilgan jadvaldir. Tajribalar soni masalaning mohiyatiga qarab aniqlanadi. Tajribaning bir faktorli va ko’p faktorli rejalashtirish ko’rinishlari mavjud.
Tajribani bir faktorli rejalashtirishda faktorlarning chiquvchi ko’rsatkichiga ta’sirlari navbat bilan o’rganiladi, ya’ni tajriba o’tkazishda faqat bitta faktorning qiymati o’zgartirilib, qolgan faktorlar o’zgarmas deb qaraladi.
Ikki faktorli tajribani rejalashtirish matrisasi 6.1 - jadvalda keltirilgan.
6.1 - jadval.
X2 faktorning sathlari
X1 faktorning sathlari
X1(1)
X1(2)
X1(3)
X1(4)
X1(5)
X2(1) X2(2) X2(3) X2(4) X2(5)
Y11 Y12 Y13 Y14 Y15
Y21 Y22 Y23 Y24 Y25
Y31 Y32 Y33 Y34 Y35
Y41 Y42 Y43 Y44 Y45
Y51 Y52 Y53 Y54 Y55
6.1 - jadvalda X1(r) va X2(q) - faktorlarning qiymatlari sathlari, r, q - faktorlar sathlari tartib raqamlari. X1ning r - sathiga, X2 ning q - sathiga to’g’ri keluvchi chiquvchi faktorlarning qiymati Yrq bilan belgilangan.
6.1 - jadvalda sathlar soni X1 uchun ham, X2 uchun ham K=5. Bu holda faktorlar sathlari kombinasiyalari soni 25 ga teng bo’ladi. Agar har bir kombinasiya uchun bittadan ortiq tajriba o’tkazilsa, u holda ularning o’rtachasi olinadi.
Tajriba natijalarini qayta ishlash natijalarini olamiz:
X2=X2(1)bo’lganda, Y1=F1(X1)=F’(X1,a1,b1,c1), X2=X2(2) bo’lganda, Y2=F2(X1)=F’(X1,a2,b2,c2), .................................................................... X2=X2(k) bo’lganda, Yk=F’k(X1)=F(X1,ak,bk,ck), Bunda ai, bi, ci - regressiya koeffitsiyentlari.
Shunday qilib, Y1=F(X1,a,b,c) bog’lanishni topamiz, bunda a=(X2), b=(X2), c=(X2), Bularni o’rniga qo’ysak, у=F(X1,(X2),(X2),(X2)) jarayon yoki tizimning ikki faktorli matematik modeliga ega bo’lamiz.
O’qlari faktorlarning qiymatlaridan iborat bo’lgan fazo - faktorli fazo deyiladi. Uning qiymatlarga mos nuqtalardan tashkil topgan sirt akslantirilgan (otklik) sirt deyiladi (6.1.a-rasm). Y=F(X1,X2) funksiya akslantirilgan (otklik) funksiya deyiladi.
6.1 - rasm. a) akslantirilgan (otlik) sirt, b) sath chiziqlari.
Agar akslantirilgan sirtni tekislikka parallel tekisliklar bilan kesilsa, sath chiziqlari hosil bo’ladi. (6.1.b-rasm).
Faktorlar qiymatlarining o’zgarish sohasi jarayon yoki tizimning texnik imkoniyatlariga bog’liq bo’ladi.
Faktorning modellari ekstremal qiymatlariga mos keladigan qiymatlarini aniqlashda klassik tahlil usullaridan foydalaniladi.
Natijalarning talab qilingan aniqligiga erishish uchun ko’p sondagi tajribalar o’tkazishga to’g’ri keladi. Bir faktorli modellashtirishda faktorning boshqa faktorlarga bog’liqlik darajasini aniqlab bo’lmaydi va model koeffitsiyentlari oz miqdordagi tajribalar natijalari bo’yicha aniqlanadi.
Agar tajriba o’tkazilayotgan paytda hamma faktorlar o’zgartirib turilsa, bunday modellashtirish ko’p faktorli modellashtirish deyiladi. Bunday rejalashtirish tajribalar soni oz bo’lganda yetarlicha aniqlikni ta’minlaydi.
Bu holda koeffitsiyentlarni aniqlashda hamma tajriba natijalaridan foydalanilib, ularning aniqligi yuqori bo’ladi.
Agar matematik modelp Y=0+1x1+2x2+...+nxn chiziqli ko’rinishda bo’lsa, uning koeffitsiyentlarini aniqlash uchun N=(n+1) ta tajriba o’tkazish kifoya qiladi. Bunda faktorlar soni ortishi bilan regressiya koeffitsiyentlarining dispersiyasi kamayadi. Tajribani ko’p faktorli rejalashtirishda tajriba natijalari biror qiymatga yaqin keltiriladi (randomizasiyalanadi). Bu holat nazorat qilinmaydigan faktorlarni chiqarib tashlash imkonini beradi.
Ko’p faktorli tajribani rejalashtirish to’la faktorli, kasr faktorli ekstremal tajribalar va dispersion tahlil o’tkazish bilan amalga oshiriladi. Har bir tajriba yoki tahlil ma’lumotlarini qayta ishlash usullari har xil bo’ladi.