ikkinchi tartibli egri chiziqlar. Ellips, giperbola va parabola
Ellips va uning kanonik tenglamasi. 4-ta‘rif. Har bir nuqtasidan tekislikning berilgan ikkita nuqtasigacha masofalarning yig’indisi o’zgarmas bo’lgan shu tekislik nuqtalarining geometrik o’rniga ellips deb ataladi.
Tekislikning berilgan nuqtalarini F1 va F2 orqali belgilab ularni ellipsning fokuslari deb ataymiz. Fokuslar orasidagi masofani 2c va ellipsning har bir nuqtasidan uning fokuslarigacha bo’lgan masofalarning yig’indisini 2a orqali belgilaymiz. 0xy dekart koordinatalar sistemasini 0x o’qni ellipsning fokuslari F1 va F2 orqali o’tkazib F1 dan F2 tomonga yo’naltiramiz, koordinatalar boshini esa F1F2 kesmaning o’rtasiga joylashtiramiz. U holda fokuslar F1(-c;0), F2(c,0) koordinatalarga ega bo’ladi (2-chizma).
Endi shu ellipsning tenglamasini keltirib chiqaramiz. M(x,y) ellipsning ixtiyoriy nuqtasi bo’lsin. Ta‘rifga ko’ra M nuqtadan ellipsning fokuslari F1 va F2 gacha masofalarning yig’indisi o’zgarmas son 2a ga teng, ya‘ni
2-chizma
MF1+MF2=2a.
Ikki nuqta orasidagi masofani topish formulasi (2 ) ga ko’ra
bo’lgani uchun
yoki
kelib chiqadi. Oxirgi tenglikning ikkala tomonini kvadratga ko’tarib ixchamlaymiz:
Buni yana ikkala tomonini kvadratga ko’tarib ixchamlasak
(7)
hosil bo’ladi.
Uchburchak ikki tomonining yig’indisi uchinchi tomonidan katta ekanini nazarda tutsak dan MF1+MF2>F1F2; 2a>2c; a>c; a2-c2>0 (a>0, c>0) bo’ladi.
a2-c2=b2 deb belgilab uni (7) ga qo’yamiz. U holda