L'écologie



Yüklə 20,16 Kb.
tarix28.11.2022
ölçüsü20,16 Kb.
#70955
Lecologue


L'écologie

L'écologie ou écologie scientifiquea, est une science qui étudie les interactions des êtres vivants entre eux et avec leur milieu. L'ensemble des êtres vivants, de leur milieu de vie et des relations qu'ils entretiennent forme un écosystème. L'écologie fait partie intégrante de la discipline plus vaste qu'est la science de l'environnement (ou science environnementale).

Le terme écologie est construit sur le grec οἶκος / oîkos (« maison, habitat ») et λόγος / lógos (« discours ») : c'est la science de l'habitat. Il fut inventé en 1866 par Ernst Haeckel, biologiste allemand darwiniste. Dans son ouvrage Morphologie générale des organismes, il désignait par ce terme « la science des relations des organismes avec le monde environnant, c'est-à-dire, dans un sens large, la science des conditions d'existence »1.

Une définition généralement admise, particulièrement utilisée en écologie humaine, admet l'écologie comme étant « le rapport triangulaire entre les individus d'une espèce, l'activité organisée de cette espèce et l'environnement de cette activité » ; l'environnement est « à la fois le produit et la condition de cette activité, et donc de la survie de l'espèce »2.

Le terme écologiste peut désigner un scientifique spécialisé dans l'étude de l'écologie3,4, un adepte de l’écologisme, ou partisan de l’écologie politique. Le terme écologue désigne plus spécifiquement un spécialiste de l'écologie, qu'il soit chercheur, biologiste ou ingénieur, et aurait été inventé, dans les années 1980, pour distinguer les scientifiques des militants


Dans le champ scientifique, le terme « écologie » désigne la science qui a pour objet l'étude des relations des êtres vivants (animaux, végétaux, micro-organismes, etc.) entre eux ainsi qu'avec leur habitat ou l’environnement dans son ensemble6,7. Ces interactions déterminent la distribution et l'abondance des organismes vivants sur Terre. Ainsi, en science, l'écologie est souvent classée dans le champ de la biologie. Elle étudie deux grands ensembles : celui des êtres vivants (biocénose) et le milieu physique (biotope), le tout formant l'écosystème.

Ce terme d'écosystème, contraction de l'expression « système écologique », renvoie à la théorie des systèmes et permet de placer l'écologie dans un contexte plus général. Elle peut alors être définie comme étant la science des écosystèmes, l'écosystème étant une unité d'appréhension de la nature. On étudie les écosystèmes à l'aide d'un « macroscope », selon l'expression imagée de Howard T. Odum8.

Une conception plus restreinte définit l'écologie comme l'étude des flux de matière et d'énergie (réseaux trophiques) dans un écosystème
Le concept d'écologie apparaît en 1859 dans le préambule de De l'origine des espèces de Charles Darwin, sous le nom d'« économie de la nature ». Il y décrit les relations entre les prairies de trèfles, pollinisés par les bourdons, et les chats qui mangent les mulots qui eux-mêmes délogent les bourdons de leurs terriers10. Le terme « écologie », en tant que tel, apparait pour la première fois sous la plume de Ernst Haeckel, il est construit à partir du grec ancien οἶκος oikos (maison, habitat) et λόγος lógos (discours). Dans son ouvrage Morphologie générale des organismes, Haeckel la désignait en ces termes : « la science des relations des organismes avec le monde environnant, c'est-à-dire, dans un sens large, la science des conditions d'existence »1. Cette science a plus tard été introduite en France par les géographes de l'école des Annales de géographie, notamment Paul Vidal de La Blache. Cette revue a été le siège d'une collaboration entre des géographes et des botanistes comme Gaston Bonnier, notamment pour la flore alpine11. Plus spécifiquement, le terme « écologie » semble avoir été utilisé pour la première fois en français vers 1874.
Disciplines de l'écologie par niveau d'organisation
En tant que science biologique, l'écologie est fortement liée à d'autres branches de la biologie, principalement la génétique des populations, la physiologie, l'éthologie et les sciences de l'évolution9. Mais elle est également en lien avec la géologie, pour l'étude de l'environnement abiotique, notamment la pédologie (l'étude des sols) et la climatologie, ainsi que la géographie humaine et physique.

Il existe en biologie divers niveaux d'organisation : biologie moléculaire, cellulaire, des organismes (au niveau individu et organisme), des populations, des communautés, des écosystèmes et de la biosphère. L'écologie est une science holistique, elle étudie non seulement chaque élément dans ses rapports avec les autres éléments, mais aussi l'évolution de ces rapports selon les modifications que subit le milieu, les populations animales et végétales. Chaque niveau d'organisation apporte des propriétés émergentes, liées aux interactions entre ces composantes.

Les niveaux d'organisation et les sous-disciplines qui s'y rattachent sont :

l'écophysiologie, qui étudie les relations entre un processus physiologique et les facteurs environnementaux ;


l'auto-écologie (ou autécologie), qui étudie les relations entre un type d'organisme et l'environnement ;
l'écologie des populations (ou démécologie), qui étudie les relations entre une population d'individus d'une même espèce et son habitat ;
Des populations d'espèces différentes, mais partageants une fonction commune sont regroupées sous le vocable de communautés ;
la synécologie, ou écologie des communautés, qui étudie les écosystèmes ;
à une échelle plus large, les écosystèmes forment des ensembles étudiés par l'écologie des paysages ;
l'écologie globale, qui étudie l'écologie à l'échelle de l'écosphère ou biosphère (totalité des milieux occupés par des êtres vivants).
Ce sont les relations intraspécifiques qui font que l'on passe d'un ensemble d'individus isolés pour s'intéresser à une population. Dans la majorité des cas, les individus d'une même espèce éprouvent une répulsion face à des congénères, ils se répartissent dans des territoires distincts. Pourtant, pour se reproduire, un individu femelle et un individu mâle doivent obligatoirement se rencontrer, dans le cas des espèces sexuées. Dans d'autres cas, les individus vivent regroupés, s’il n'existe aucun lien particulier entre les individus qui réagissent simplement aux mêmes facteurs de l'environnement, ce n'est qu'une foule, la vie sociale commence quand il existe des interactions particulières entre ces individus. Certaines espèces d'insectes sont qualifiées d'eusociales quand il y a des différences physiologiques et morphologiques entre les individus d'une même société ; c'est le cas des fourmis, des abeilles ou des termites. À l'instar des individus, une population naît, croît, répond aux conditions de l'environnement et s'adapte. Elle peut mourir, si tous ses individus meurent ou si elle n'a plus d'individus reproducteurs.

La biologie des populations étudie la structure et les variations des populations. Des modèles mathématiques ont été développés pour décrire ces variations au cours du temps, rassemblés sous l'appellation dynamique des populations.


Le premier principe de l'écologie est que chaque être vivant est en relation continue avec tout ce qui constitue son environnement. On parle d'écosystème pour caractériser une interaction durable entre des organismes et un milieu.

L'écosystème est analytiquement différencié en deux ensembles qui interagissent :

la biocénose, composée de l'ensemble des êtres vivants ;
le milieu (dit biotope).
Au sein de l'écosystème, les espèces ont entre elles des liens de dépendance, dont alimentaire. Elles échangent, entre elles et avec le milieu qu'elles modifient, de l'énergie et de la matière. La nécromasse en est un des éléments.

La notion d'écosystème est théorique : elle est multiscalaire (multi-échelle), c’est-à-dire qu'elle peut s'appliquer à des portions de dimensions variables de la biosphère, par exemple un étang, une prairie, ou un arbre mort. Une unité de taille inférieure est appelée un microécosystème. Il peut, par exemple, s'agir des espèces qui ont colonisé une pierre immergée. Un mésoécosystème pourrait être une forêt, et un macro-écosystème, une région et son bassin versant.

Les écosystèmes sont souvent classés par référence aux biotopes concernés. On parlera :

d'écosystèmes continentaux (ou terrestres), tels que les écosystèmes forestiers (forêts), les écosystèmes prairiaux (prairies, steppes, savanes), les agro-écosystèmes (systèmes agricoles) ;


d'écosystèmes des eaux continentales, pour les écosystèmes lacustre ou palustre (lacs, étangs) ou écosystèmes lotiques (rivières, fleuves) ;
d'écosystèmes océaniques (les mers, les océans).
Une autre classification peut se faire par référence à la biocénose (par exemple, on parle d'écosystème forestier, ou d'écosystème humain).
La Terre, d'un point de vue écologique, comprend plusieurs systèmes : l'hydrosphère (ou sphère de l'eau), la lithosphère (ou sphère du sol) et l'atmosphère (ou sphère de l'air).

La biosphère s'insère dans ces systèmes terrestres. Elle est la partie vivante de la planète, la portion biologique qui abrite la vie qui se développe. Il s'agit d'une dimension superficielle localisée, qui descend jusqu'à 11 000 mètres de profondeur et s'élève jusqu'à 15 000 mètres d'altitude par rapport au niveau de la mer. La majorité des espèces vivantes vivent dans la zone située de -100 mètres à +100 mètres d'altitude.

La vie s'est tout d'abord développée dans l'hydrosphère, à faible profondeur, dans la zone photique. Des êtres pluricellulaires sont ensuite apparus et ont pu coloniser également les zones benthiques. La vie terrestre s'est développée plus tardivement, après la formation de la couche d'ozone protégeant les êtres vivants des rayons ultraviolets. Les espèces terrestres vont d'autant plus se diversifier que les continents vont se fragmenter, ou au contraire se réunir.
Cycle biogéochimique : influence de la vie
La biosphère contient de grandes quantités d'éléments tels que le carbone, l'azote et l'oxygène. D'autres éléments, tels que le phosphore, le calcium et le potassium, sont également indispensables à la vie. Au niveau des écosystèmes et de la biosphère, il existe un recyclage permanent de tous ces éléments, qui alternent l'état minéral et l'état organique selon des cycles biogéochimiques.

En effet, le fonctionnement des écosystèmes est essentiellement basé sur la conversion de l'énergie solaire en énergie chimique par les organismes autotrophes, grâce à la photosynthèse (il existe aussi une chimiosynthèse sans utilisation de l'énergie solaire). Celle-ci aboutit à la production de sucres et à la libération d'oxygène. Cet oxygène est utilisé par un grand nombre d'organismes — autotrophes comme hétérotrophes — pour dégrader les sucres par la respiration cellulaire, libérant ainsi de l'eau, du dioxyde de carbone et l'énergie nécessaire à leur fonctionnement. Ainsi, l'activité des êtres vivants est à l'origine de la composition spécifique de l'atmosphère terrestre, la circulation des gaz étant assurée par de grands courants aériens.

Les êtres vivants participent activement au cycle de l'eau. En effet, les plantes ont besoin d'eau pour le transport des nutriments captés par les racines jusqu'aux feuilles, une fois arrivée aux feuilles l'eau s'évapore. La végétation facilite ainsi le transport de l'eau du sol vers l'atmosphère, c'est le processus de transpiration des plantes. sur les continents la transpiration végétale est de loin le plus gros contributeur à l'évapotranspiration (80 à 90 %), Les forêts et en particulier les forêts tropicales jouent un rôle important dans le cycle de l'eau.

Par ailleurs, la composition des sols est la résultante de la composition de la roche-mère, de l'action géologique et des effets cumulatifs des êtres vivants.

Les interactions existant entre les différents êtres vivants s'accompagnent d'un brassage permanent de substances minérales et organiques, absorbées par les êtres vivants pour leur croissance, leur entretien et leur reproduction, et rejetées comme déchets. Ces recyclages permanents des éléments (en particulier du carbone, de l'oxygène, de l'azote) ainsi que de l'eau) sont appelés cycles biogéochimiques. Ils confèrent à la biosphère une stabilité durable, ceci en dehors des interventions humaines et des phénomènes géoclimatiques exceptionnels.

Études à l'échelle planétaire globale


Pour mieux comprendre le fonctionnement de la biosphère, l'équilibre énergétique et les dysfonctionnements liés à l'activité humaine, il a fallu dans un premier temps utiliser des modèles réduits des écosystèmes, des mésocosmes. Des scientifiques américains ont réalisé un modèle de la planète tout entière, appelée Biosphère II.

Aujourd'hui des d'observations à l'échelle planétaire permettent de créer des modèles informatiques de la biosphère dans sa globalité. Il est ainsi possible d'observer les effets du réchauffement climatique sur la répartition des écosystèmes sur des continents entiers

Par le mécanisme de la sélection naturelle, les interactions qu'entretiennent les êtres vivants avec leur environnement physique et les individus des autres espèces (leur écologie, en somme) ont façonné l'évolution des espèces. L'écologie évolutive considère l'influence de l'histoire évolutive des espèces, en plus des facteurs des environnements actuels, pour expliquer les variations du monde vivant observées aujourd'hui.

Soumis aux mêmes forces de sélection, des espèces différentes vont subir une convergence évolutive. C'est-à-dire qu'il possède des organes assurant la même fonction mais ayant une origine différente. La structure de l'organe peut, ou non, être différente. Parmi les exemples de convergence on peut citer l'hydrodynamisme des requins, des dauphins et des ichtyosaures ou l'adaptation de la langue des fourmiliers, des pangolins et des pics-verts


Les biomes sont des regroupements biogéographiques d'écosystèmes par régions climatiques. Le biome constitue une formation biogéographique d'aspect homogène sur une vaste surface (par exemple, la toundra ou la steppe).

L'ensemble des biomes, ou ensemble des lieux où la vie est possible (depuis les plus hautes montagnes jusqu'aux abysses), constitue la biosphère.

Les écosystèmes ne sont pas isolés les uns des autres, mais interdépendants. Par exemple, l'eau circule de l'un à l'autre par le biais de la rivière ou du fleuve. Le milieu liquide lui-même définit des écosystèmes. Certaines espèces, tels les saumons ou les anguilles d'eau douce, passent d'un système marin à un système d'eau douce et vice-versa. Ces relations entre les écosystèmes ont amené à proposer la notion de biome.

Les biomes correspondent assez bien à des subdivisions réparties latitudinalement, de l'équateur vers les pôles, en fonction du milieu (aquatique, terrestre, montagnard) et du climat (la répartition est généralement fondue sur les adaptations des espèces au froid et/ou à la sécheresse). Par exemple, on trouve en mer des plantes aquatiques seulement dans la partie photique (où la lumière pénètre), tandis qu'on trouve principalement des conifères en milieu montagnard.

Ces divisions sont assez schématiques mais, globalement, latitude et altitude permettent une bonne représentation de la répartition de la biodiversité au sein de la biosphère. Très généralement, la richesse en biodiversité, tant animale que végétale, est décroissante depuis l'équateur (comme au Brésil) jusqu'aux pôles.

Un autre mode de représentation est la division en écozones, laquelle est aujourd'hui très bien définie et suit essentiellement les bordures continentales. Les écozones sont elles-mêmes divisées en écorégions, quoique la définition de leurs contours soit plus controversée.


L'approche fonctionnelle de l'écologie se détache de la composition spécifique des écosystèmes pour se concentrer sur des phénomènes physiques, chimiques ou biologiques observables. En classant les organismes dans des groupes fonctionnels, il est possible d'une part de s'affranchir de l'identification des espèces, d'autre part de comparer des écosystèmes qui peuvent sembler très différents (en raison de leur éloignement géographique, des espèces présentes et du milieu physique). L'écologie fonctionnelle étudie les flux de matière et d'énergie entre les différents compartiments de l'écosystème. Pour ce faire, elle utilise une approche souvent calculatoire de la nature, en quantifiant la production primaire ou la respiration.

Les études du fonctionnement des écosystèmes, peuvent être conduites à l'échelle de l'ensemble d'un écosystème, ou à l'aide de mésocosmes, expériences à échelle réduite réalisées en laboratoire. En effet s’il parait simple de mesurer la masse de matière végétale (biomasse) produite chaque année dans une prairie, en la tondant puis en pesant la tonte obtenue après l'avoir séchée, la même expérience est impossible à réaliser en forêt tropicale.


Les groupes fonctionnels peuvent être définis à différents niveaux d'organisation. On peut considérer le groupe des producteurs primaires aussi bien que celui des herbacées dont les racines prélèvent les ressources à une profondeur comprise entre 5 et 20 cm dans le sol. Les espèces, regroupées selon leur rôle dans l'écosystème, forment des communautés. Il est parfois extrêmement difficile d'identifier les espèces présentes dans certains types d'écosystèmes (sol, forêt tropicale, prairies) ; cette approche offre alors des avantages supplémentaires.
Yüklə 20,16 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin