Changes in the species composition, stand structure and aboveground biomass of a lowland dipterocarp forest in samboja



Yüklə 0.63 Mb.
Pdf просмотр
tarix15.08.2017
ölçüsü0.63 Mb.

1

CHANGES IN THE SPECIES COMPOSITION, STAND 

STRUCTURE AND ABOVEGROUND BIOMASS OF A LOWLAND 

DIPTEROCARP FOREST IN SAMBOJA,  

EAST KALIMANTAN

Haruni Krisnawati

1,2

, Djoko Wahjono



3

 and Rinaldi Imanuddin

1

ABSTRACT


The dynamics of species composition, stand structure and aboveground biomass were studied 

over a 4.3-yr period (December 2004 – April 2009) in a lowland dipterocarp forest of Samboja, 

East Kalimantan. This study was conducted in six permanent sample plots (100 m x 100 m each) 

distributed over an area of 26.5 ha of Samboja Research Forest. All woody plants ≥ 10 cm dbh 

(diameter at 1.3 m aboveground) were identified. In December 2004, 2.143 trees were measured 

in the six plots, consisting of 39 families, 82 genera and 111 species. The condition in April 2009 

(after 4.3 yr) was: 2,466 trees, 40 families, 86 genera and 123 species. Most species were found 

in both occasions. Fourteen new species were registered, which contributed to 9.8% of a net 

addition of the total number of species found in the six plots. Over the 4.3-yr period, there was 

also an increase of 15.1% in density, 12.9% in basal area, and 11.6% in aboveground biomass, 

respectively. The density increased from 357 to 411 trees per ha; the basal area increased from 

20.09 to 22.67 m

2

 ha


-1

; and the aboveground biomass increased from 286.3 to 319.4 ton ha

-1

. The 


family Dipterocarpaceae was the richest in species (more than 20 species found in both occasions), 

followed by Euphorbiaceae, Burseraceae, Fabaceae, and Anacardiaceae (more than five species). 

Most genera (80%) contained just one species, but Shorea with 13 species was the richest. Four 

families (Dipterocarpaceae, Fabaceae, Myrtaceae and Lauraceae) contained more than 80% of 

the aboveground biomass in both occasions (75% of them from Dipterocarpaceae family). The 

increases in species richness and density 

did not cause any significant differences in the diversity 

index and diameter distribution. This condition suggested that forest vegetation of the study site 

maintains its diversity composition and structural features over the period of study.

 

Keywords: stand dynamic, structure, biomass, permanent plots, tropical forest



I.  INTRODUCTION

Sustainable forest management is an important issue in Indonesia. Sound forest 

management cannot possibly be applied without an understanding of the basic ecology 

of the forests. One prerequisite for sustainable forest management is reliable information 

1

 Center for Forest Conservation and Rehabilitation Research and Development, Forestry Research and 



Development Agency. Jl. Gunung Batu No. 5 Bogor, Indonesia.

2

 Corresponding Author. E-mail: h.krisnawati@yahoo.co.id



3

 Center for Forest Productivity Improvement, Forestry Research and Development Agency 

Jl. Gunung Batu No. 5 Bogor, Indonesia.


Journal of Forestry Research Vol. 8  No. 1, 2011: 

2

1-16



on stand dynamics and its characteristics since it is essential to know how the forest 

will grow and respond to natural conditions or occasional disturbances. However, little 

information is available regarding the dynamics of species composition, structural and 

productivity (biomass) changes of the tropical forests in Indonesia over time. 

Most studies in Indonesia are based on surveys on compositional and structural 

patterns of certain sites or forests at one occasion (e.g. Kartawinata 

et al., 1981; Riswan, 

1987; Suselo and Riswan, 1987; Sist and Saridan, 1998; Heriyanto, 2001; Krisnawati, 

2003). Forest vegetations, however, are dynamic and changes occur continuously at 

individual and species population levels throughout time, eventhough the vegetation 

as a whole is expected to be stable, as a result of a balance between growth, recruitment 

and mortality. Several studies on forest dynamics in other tropical regions have been 

conducted (e.g. Lieberman 

et al., 1985; Manokaran and Kochummen, 1987; Swaine et 

al., 1987); however, a better understanding of the tropical forest dynamics particularly 

in Indonesian forests is still limited.  Measurement of permanent sample plots at certain 

intervals and over a long period is therefore required for understanding of the process in 

which the changes occur at individual, species and stand or community levels.

The objective of this study was to analyse the changes in species composition, stand 

structure, and aboveground biomass of the woody plants of a lowland dipterocarp forest 

in the Samboja Research Forest, East Kalimantan, over a period of time (December 

2004 - April 2009). The results were expected to provide an insight whether the forest 

vegetation in the study site would maintain its species composition and structural 

characteristics over the period of time.

II.  MATERIALS AND METHODS

A.  Site Description

This study was conducted in the 26.5 ha of 504 ha remaining Samboja Research 

Forest, 4.5 km from the starting point of Samboja-Semoi route (0°59’ N latitude 

and 116.56° E longitude, Figure 1). This unlogged natural forest was considered as a 

miniature of tropical rain forest in Kalimantan due to its high biodiversity (Gunawan 

et al., 2007). About 296 species of 54 families including species of Palmae have been 

reported to inhabit this forest (Yassir and Juliati, 2003). 

The site is located at the village of Sungai Merdeka, the Sub-District of Samboja, 

District of Kutai Kartanegara, East Kalimantan Province. The average annual 

precipitation in the site ranges from 1,682 to 2,314 mm with the number of rainy days 

of 72–154 days per year. The average temperature is about 26–28 

o

C with the minimum 



value in the day time of 23.3 

o

C and the maximum value in the night time of 32.7 



o

C. 


The humidity ranges from 63 to 89% (Adinugroho 

et al., 2006; Atmoko, 2007).

The altitudinal range of the area is from 40 to 150 m above sea level.  The topography 

is relatively undulating and rolling with the slopes of around 10–40% while some parts 



Changes in the ..... H. Krisnawati et al.

3

may reach 60% (Gunawan 



et al., 2007). The dominant soil type includes ultisol which 

is typically quite acidic and deficient in major nutrients, such as calcium and potassium. 

Geologically, the soil is mostly derived from tertiary sedimentary rocks.

B.  Methods

The study was based on the results of the monitoring of six permanent sample plots 

(100 m x100 m square plot of 1 ha each; Figure 1) distributed over an area of 26.5 ha of 

Samboja Research Forest. All plots were first delineated on the ground to cover the range 

of topography of the site. Each plot was divided into 100 sub-plots (quadrats) of 10 m x 

10 m to allow a better control of measurement and monitoring. The plot establishment 

and the first measurement were conducted in December 2004 and then re-measured in 

May 2006, June 2008, and April 2009 (in total 4 measurements). However, only the first 

and fourth measurements covering a period of 4 years and 4 months (approximately 4.3 

years) were reported in the present study.

In each plot, all woody plants of at least 10 cm dbh (diameter at 1.3 m aboveground) 

were marked, identified and measured. 

The dbh of every target tree was measured at 

each measurement, and dead and newly recruited target trees were registered at each 

re-measurement time. Tree height was measured by using a hagameter for all trees in 

the plots for the first and second measurements and 100 trees with various dbh (one 

Figure 1. Location of the research plots in Samboja Research Forest, East Kalimantan



Journal of Forestry Research Vol. 8  No. 1, 2011: 

4

1-16



tree in each sub-plot) for the third and fourth measurements. All trees in the plots were 

mapped, but no analysis was done at the individual level. 

All tree specimens were collected and identified in the herbarium collection of the 

Samboja Forestry Research Institute. A list of species was compiled at each measurement. 

Shannon's diversity and Pielou's evenness indices were calculated for each occasion 

(Magurran, 1988; Ludwig and Reynolds, 1988). Stand density (number of trees), basal 

area, and aboveground biomass were also calculated at each occasion (Husch 

et al. 


2003). The aboveground biomass was estimated using allometric equations developed 

by Yamakura 

et al. (1986) for undisturbed tropical lowland rain forests in Sebulu, East 

Kalimantan province. The site of their study was considered to have similar characteristics 

with this study site in terms of forest type, topography, climate, soil type, and dominant 

family in the forests. 

Changes in the species composition, stand density, basal area, 

and aboveground biomass were analysed and then compared at each assessment. 

The 

differences of diameter distribution between the two occasions were also tested using a 



Kolmogorov-Smirnov two sample test (Zarr, 2006).

III. RESULTS AND DISCUSSION

A.  Species Composition

In December 2004 2,143 trees of ≥ 10 cm in diameter were measured in six 

permanent sample plots of the Samboja Research Forest. They consisted of 39 families, 

82 genera and 111 species. The condition in April 2009 (after 4.3 yr) was: 2466 trees, 40 

families, 86 genera and 123 species. The list of species and families found in these plots 

for both measurement times was presented in Appendix 1.

Most species were found in both occasions (2004 and 2009), except for 

Garcinia 

nervosa and Trigonostemon laevigatus that did not occur in 2009, although these species 

might still be present below the diameter limit (10 cm) used in this study. Fourteen new 

species were registered (i.e. 

Actinodaphne malaccensis, Albizia minahasae, Diospyros 

confertifolia,  Durio oxleyanus,  Knema conferta,  Magnolia borneensis,  Palaquium 

pseudorostratum, Palaquiun gutta, Parishia insignis, Porterandia anisophylla, Dillenia sp., 

Durio sp. Parashorea sp., and Shorea sp.1), which contributed to 9.8% of a net addition 

of the total number of species found in the study site over the 4.3-yr period.

The species that disappeared from the plots occurred at low density in the study 

area (less than one tree per ha) and any cause of mortality might eliminate them from 

the plots. However, their absence might be replaced by newly recruited trees due to 

ingrowth. These species might have also been represented in the study site as smaller 

individuals. The same state applied to the new species that entered the plots. 

The Dipterocarpaceae family was the richest in species (more than 20 species 

found in both 2004 and 2009), followed by the families of Euphorbiaceae, Burseraceae, 


Changes in the ..... H. Krisnawati et al.

5

Fabaceae, and Myrtaceae (more than five species found in both occasions) (Figure 2). 



Most genera (80%) contained just one species; however, Shorea was the richest genus 

consisting of 13 species.

The indices of Shannon’s diversity and Pielou's evenness were 3.34 and 0.71 in 2004, 

respectively; and 3.33 and 0.69 in 2009. Result of statistical 

t-test (Zarr, 2006) indicated 

that these values were not different (

P < 0.05) meaning that the changes in species 

richness over the period of 4.3-yr did not cause any difference in the value of Shannon 's 

diversity index, which is little affected by rare species. Approximately 70% of the species 

found in the plots were rare species (low density) with only less than one tree (dbh ≥ 10 

cm) per ha. However, this low density of the species is typically found in tropical rain 

forests 


(Whitmore, 1984). Although the majority of species have been found with a low 

density, the forest state in the study area can still be 

considered to be 

stable, as the value 

of Shannon's diversity index is above 3.0 (Odum, 1971). This result 

suggested that the 

vegetation of the study site maintains its original composition.

B.  Stand Structure

In the first measurement (December 2004), 15 species comprised about 80% of the 

stand basal area (

BA) and 77% of the stand density (N) over 10 cm dbh (Table 1). All of 

0

5



10

15

20



25

N

um

be

r o

f s

pe

cie

s

Family

2004


2009

Family


N

umb


er of s

pe

cies



Figure 2. Ten dominant families based on species richness in the six plots over two observa-

tion periods.



Journal of Forestry Research Vol. 8  No. 1, 2011: 

6

1-16



these were categorized as commercial species. Of these species, half of them were from 

Dipterocarpaceae family which contributes to 44% of the stand density and 53% of the 

basal area. Most of them are fast growing and shade tolerant. The most abundant species 

was 


Vatica odorata, followed by Shorea bracteolata and Shorea parvifolia.

After the 4.3 yr period, the same species still comprised 80% of the stand basal area 

but the ranking changed slightly (Table 1). 

Shorea bracteolata ranked fifth in basal area 

(higher than 

Eusideroxylon zwageri), since more recruited trees of this species entered 

the plots. However, in terms of stand density the ranking retained the same. A study 

conducted by Silva 

et al. (1995) in the logged-over area of the Tapajós Forest, Brazil, 

found a slight change in species ranking; but another study, conducted in the same site 

of the Brazilian Amazon (Carvalho, 1992, cited

 in Silva et al., 1995), found no major 

changes in species ranking before and after logging.

In general, the stand density in the study site increased by 15.1% from 357 trees 

per ha to 411 trees per ha over the 4.3 yr period. Similarly, the basal area increased by 

12.9% from 20.09 m

2

 ha


-1

 to 22.67 m

2

 ha


-1

. The same trends applied to all individual plots 

ranging from 5.8 to 24.5% in density and from 9.8 to 17.7% in basal area. The positive 

changes in density found in this study probably due to more species and more recruited 

trees entered the plots. The number of trees that pass the minimum diameter limit was 

about 71 trees per ha over 4.3 yr (or 16 trees ha

-1

 yr


-1

), while the mortality was lower 

(about 17 trees per ha over 4.3 yr or 4 trees ha

-1

 yr



-1

). The loss of basal area by death of 

some trees was lower than the gain by growth of surviving trees. Most of species showed 

a positive balance in basal area (Table 1).   

Compared with other studies conducted in several other topical forests, the change 

or the increase found in this study was greater which was probably due to an increase 

in the number of recruited trees and the fast growth of some species (particularly from 

Dipterocarpaceae family). Felfili (1995) reported a reduction of 2% in density over 5 cm 

dbh for a 6-yr period for a gallery forest located in the Central Brazil. Another study by 

Felfili 


et al. (2000) for a forest site in Brazil also showed a reduction (4.5%) in density 

over a 9-yr period. On the other hand, Silva 

et al. (1995) found an addition of 13% in 

density for a 11-yr period for a logged-over forest also located in Brazil. The increase in 

density was also reported by Carvalho (1992), cited in Silva 

et al. (1995), who found 

an addition of 1% for an Amazonian site over 8-yr period. Several other studies in 

Malaysian dipterocarp forest (Manokaran and Kochumen, 1987) and in Ghana forest 

(Swaine 

et al. 1987) showed smaller variation in density over the study period than in 

this study (Table 1). 

The addition (due to recruitment) and reduction (due to mortality) in the number 

of trees coupled with the growth of trees at a site would result in balance vegetation. 

Felfili (1995) noted that if there is a period of high mortality (when the density is 

reduced) and followed by another period of high recruitment (when new trees fill the 


Changes in the ..... H. Krisnawati et al.

7

gaps formed previously), the stand state can be said to reach the dynamic equilibrium, 



and therefore, maintaining the structure of the vegetation over time. 

Table 1.  Changes in stand density (

N) and basal area (BA) of the six permanent 

plots in the Samboja Research Forest, East Kalimantan  

(December 2004-April 2009) listed based on basal area

Species


Family

2004


2009

2004-2009

Change

N

BA



N

BA

In.



Mor.

N

BA



Shorea laevis 

Dipt.


15.8

3.25


18.7

3.32


3.7

0.8


+

+

Shorea parvifolia 



Dipt.

30.8


1.70

42.0


2.07

12.7


1.5

+

+



Vatica odorata 

Dipt.


49.2

1.58


56.3

1.76


11.0

3.8


+

+

Syzygium sp.



Myrt.

36.3


1.36

43.8


1.60

9.1


1.7

+

+



Eusideroxylon zwageri 

Laur.


16.0

1.23


16.7

1.33


1.2

0.5


+

+

Shorea bracteolata 



Dipt.

40.3


1.23

43.7


1.44

4.7


1.3

+

+



Dipterocarpus cornutus 

Dipt.


7.0

0.99


10.8

1.12


4.0

0.2


+

+

Sindora wallichii 



Fab.

20.7


0.89

24.7


1.12

4.7


0.7

+

+



Koompassia malaccensis 

Fab.


7.5

0.73


7.0

0.80


0

0.5


-

+

Shorea lamellata 



Dipt.

8.2


0.72

8.3


0.80

0.3


0.2

+

+



Dipterocarpus confertus 

Dipt.


4.5

0.71


5.8

0.78


1.5

0.2


+

+

Madhuca  sericea 



Sapot.

12.3


0.56

13.7


0.67

1.7


0.3

+

+



Diospyros borneensis

 

Eben.



14.7

0.45


16.7

0.55


2.2

0.2


+

+

Crypteronia griffithii 



Crypt.

9.7


0.43

9.5


0.48

0.2


0.3

-

+



Shorea johorensis 

Dipt.


0.8

0.39


0.7

0.38


0

0.2


-

-

Gonystylus velutinus



Thym.

8.7


0.33

8.3


0.37

0.7


1.0

-

+



Diallium sp.

Caes.


1.3

0.28


1.3

0.30


0

0

+



+

Knema laterisia

Myrist.

8.5


0.25

8.7


0.29

0.5


0.3

+

+



Shorea smithiana

Dipt.


1.8

0.24


1.8

0.26


0

0

+



+

Tristaniopsis sp.

Myrt.

0.3


0.22

0.3


0.22

0

0



+

+

Shorea javanica 



Dipt.

5.2


0.18

6.5


0.18

1.7


0.3

+

+



Hydnocarpus gracilis

Flac..


4.8

0.14


4.7

0.16


0

0.2


-

+

Gironniera nervosa 



Ulm.

3.2


0.13

3.0


0.15

0

0.2



-

+

Hopea mengeraw



an

Dipt.


3.8

0.12


4.0

0.14


0.3

0.2


+

+

Remaining species



45.7

1.97


54.0

2.34


10.8

2.5


+

+

Total



357.2 20.09 411.0 22.67

70.8


17.0

+

+



Notes: 

N = number of trees per ha; BA = basal area (m

2

 ha


-1

); 


In = ingrowth (number of recruited trees per ha); 

Mor = number of dead trees per ha; + = increase; - = decrease



Journal of Forestry Research Vol. 8  No. 1, 2011: 

8

1-16



The diameter distribution of surviving trees for both occasions in December 2004 

and April 2009 (Figure 3), showed a reversed-J shape which indicated a continuous 

ingrowth. The same trends applied to other diameter distributions for other years. 

For dead trees, numbers of mortality tend to decrease with increasing diameter. The 

diameter distributions showed that the number of trees at each diameter class generally 

increased over 4.3 yr period. However, the differences were not significant between the 

two occasions; the test statistic of the Kolmogorov-Smirnov two sample test (K-S) was 

0.0062. The distributions between 2004 and other years (2006 and 2008) were also not 

significantly different (K-S of 2004-2006 = 0.0179; K-S of 2004-2008 = 0.0056). The 

same results were found by e.g. Swaine

 et al. (1987) for moist semi-deciduous forest 

in Kade, Ghana over a 14 yr period and Felfili 

et al. (2000) for savanna woodland in 

Brazilian Amazon over a 9 yr period.  

C.  Aboveground Biomass

Four families (Dipterocarpaceae, Fabaceae, Myrtaceae and Lauraceae) contained 

more than 80% of the aboveground biomass (≥ 10cm dbh) in both 2004 and 2009 

(Table 2). Of these, almost 75% of them were 

from Dipterocarpaceae family which 

comprised about 43% of the total aboveground biomass contained in the plots. The 

0

50

100



150

200


250

300


10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 >100

N

um

be

r o

f t

re

es

 p

er 

ha

Diameter class (cm)

2004


2009

Diameter class (cm)

N

umb


er of t

re

es p



er h

a

Figure 3. Diameter distribution of the six permanent plots in the Samboja Research Forest 



at the measurements of December 2004 and April 2009

Changes in the ..... H. Krisnawati et al.

9

highest value in the amount of aboveground biomass 



belonged to 

Shorea parvifolia, 

followed by 

Sindora wallichii and Shorea bracteolata. These three species contributed to 

a net addition of 30% of total aboveground biomass.

Table 2.  Changes in aboveground biomass (

AGB) of the six permanent plots in 

the Samboja Research Forest, East Kalimantan (December 2004-April 

2009)

Family


AGB (tons ha

-1

)



Increase

2004


2009

tons ha


-1

%

Dipterocarpaceae



175.2

189.5


14.3

43.30


Fabaceae

22.1


26.7

4.7


14.05

Myrtaceae

20.1

23.1


3.0

9.06


Lauraceae

18.0


19.5

1.5


4.52

Sapotaceae

7.7

9.6


1.8

5.51


Crypteroniaceae

5.7


6.3

0.7


2.09

Caesalpiniaceae

5.1

5.5


0.4

1.18


Ebenaceae

4.7


5.9

1.3


3.86

Thymelaeaceae

3.9

4.7


0.8

2.39


Myristicaceae

3.1


3.9

0.7


2.21

Euphorbiaceae

2.1

2.9


0.8

2.45


Anacardiaceae

1.9


2.3

0.4


1.21

Lecythidaceae

1.7

1.9


0.2

0.62


Ulmaceae

1.7


1.9

0.2


0.74

Moraceae


1.6

1.9


0.3

1.00


Flacourtiaceae

1.4


1.7

0.3


0.96

Burseraceae

1.3

1.5


0.2

0.72


Theaceae

1.2


1.4

0.2


0.64

Chrysobalanaceae

1.1

1.1


0.0

0.00


Meliaceae

1.1


1.4

0.2


0.74

Remaining families

5.9

6.2


0.3

0.89


Total

286.3


319.4

33.1


100.00

Overall, the aboveground biomass of all species in the plots increased by 11.6% 

(33.1 tons ha

-1

) over the 4.3 yr period, i.e. from 286.3 tons ha



-1

 in December 2004 to 

319.4 tons ha

-1

 in April 2009 (Table 2). The same trends were also observed for each 



plot and for other occasions. The increase of each plot ranged from 7.4 to 13.8% tons 

ha

-1



The trend of aboveground biomass increases may be attributed to the high rate of 



Journal of Forestry Research Vol. 8  No. 1, 2011: 

10

1-16



recruitment and growth of some species. However, the increase of aboveground biomass 

over the 4.3 yr was not significantly different. No significant change was found in the 

biomass with time. Most of families showed smaller change (less than 1 tons 

ha

-1



in the 


aboveground biomass during the 4.3 yr period (Table 2), suggesting that carbon uptake 

by these families was limited over the 4.3 yr period.

IV. CONCLUSION

The number of species, stand density, basal area and aboveground biomass of the 

woody plants ≥10 cm dbh increased over 4.3 yr. The changes in stand density and basal 

area in the Samboja Research Forest were greater than those found in several other 

tropical forests. These increases were probably due to more species entered the plots and 

more recruited trees passing the minimum diameter limit used in this study in addition 

to the fast growth of some species growing in the plots.

The increases in species richness and density, however, 

did not cause any significant 

differentiation in the diversity index and diameter distribution, respectively. This 

condition suggested that forest vegetation of the study site maintains its diversity 

composition and structural features over the period of study.

 Longer-term monitoring 

with regular measurements, however, is necessary to clarify these trends. 

ACKNOWLEDGEMENT

We are grateful to the Center for Forest Conservation and Rehabilitation Research 

and Development (formerly Center for Forest and Nature Conservation Research and 

Development), Forestry Research and Development Agency of Indonesia for providing 

financial support to conduct this research. Thanks are also due to the Samboja Forestry 

Research Institute for providing us with the necessary research supports during our 

fieldworks and the herbarium staff for identification of the collected plant materials. 

Our technicians and local field crew from Samboja were thanked for assisting us in 

the field measurements. Part of this study was presented at the International Annual 

Meeting of the Association for Tropical Biology and Conservation, 19-23 July 2010, 

Sanur, Bali (Indonesia).  

REFERENCES

Adinugroho, W.C., D. Setiabudi, W. Gunawan, T. Atmoko and Noorcahyati. 2006. 

Potensi dan hambatan pengelolaan Kawasan Hutan dengan Tujuan Khusus 

(KHDTK) Penelitian Samboja. Prosiding Seminar Bersama Hasil-hasil Penelitian 

3 UPT Badan Litbang Kehutanan Tahun 2006. (Unpublished report). 

Atmoko, T. 2007. Rintis Wartono Kadri, Pusat Keanekaragaman Hayati di KHDTK 

Samboja, Kalimantan Timur. Wana Tropika 2: 19

20.


Changes in the ..... H. Krisnawati et al.

11

Felfili, J.M. 1995. Growth, recruitment and mortality in the Gama gallery forest in 



Central Brazil over a six-year period (1986-1991). Journal of Tropical Ecology 

11: 67–83.

Felfili, J.M., A.V. Rezende, M.C. Silva Jr.  and M.A. Silva. 2000. Changes in the floristic 

composition of Cerrado sensu stricto in Brazil over a nine-year period. Journal of 

Tropical Ecology 16: 579–590.

Gunawan, W., W.C. Adinugroho and Noorhidayah. 2007. Prospek pengembangan 

Rintis Wartono Kadri menjadi Unit Pendidikan Konservasi Alam dan Interpretasi 

Lingkungan (UPKA-ILS). Paper presented at the Seminar “Pemanfaatan Hasil 

Hutan Bukan Kayu dan Konservasi Biodiversitas Menuju Hutan Lestari”. 

(unpublished report).

Heriyanto, N.M. 2001. Komposisi dan penyebaran jenis tumbuhan di hutan bekas 

tebangan dan hutan primer, Maluku Tengah. Buletin Penelitian Hutan

 629: 31–42.

Husch, B., T.W. Beers and J.A. Kershaw. 2003. Forest Mensuration (4

th

 edition). John 



Wiley & Sons, Inc., New Jersey. 443p.

Kartawinata, K., A. Rochadi and J. Partomihardjo. 1981. Composition and structure of 

a lowland dipterocarp forest at Wanariset Samboja, East Kalimantan (Indonesia). 

Malayan Forester

 44: 397–406.

Krisnawati, H. 2003. Struktur tegakan dan komposisi jenis hutan alam bekas tebangan 

di Kalimantan Tengah. Buletin Penelitian Hutan 639: 1–19.

Lieberman, D., M. Lieberman, R. Peralta and  G.S. Hartshorn. 1985. Mortality patterns 

and stand turnover rates in a wet tropical forest in Costa Rica. Journal of Tropical 

Ecology 73: 915–924. 

Ludwig, J.A. and J.F. Reynolds. 1988. Statistical Ecology: A primer on methods and 

computing. John Wiley & Sons, New York. 337p.

Magurran, A.E. 1988. Ecological Diversity and Its Measurement.  Princeton University 

Press, New Jersey, 179p.

Manokaran, N. and M.N. Kochumen. 1987. Recruitment, growth and mortality of tree 

species in a lowland dipterocarp forest in Peninsular Malaysia. Journal of Tropical 

Ecology

 3: 315–330.



Odum, E.P. 1971. Fundamentals of Ecology (3

rd

 edition). W.B. Saunders, Coy, 



Philadelphia. 574p.

Riswan, S. 1987. Structure and floristic composition of mixed dipterocarp forest at 

Lempake, East Kalimantan. In: A.J.G.H. Kostermanns (Ed.). Proceedings of the 

3

rd



 International Round Table Conference on Dipterocarps. UNESCO, Jakarta, 

Indonesia. Pp. 435–457.



Journal of Forestry Research Vol. 8  No. 1, 2011: 

12

1-16



Silva, J.N.M., J.O.P. de Carvalho, J.D.C.A. de Lopes, B.F. de Almeida, D.H.M. Costa, 

L.C. de Oliveira, J.K. Vanclay and  J.P. Skovsgaard. 1995. Growth and yield of a 

tropical rain forest in the Brazilian Amazon 13 years after logging. Forest Ecology 

and Management 71: 267–274.

Sist, P. and A. Saridan. 1998. Description of the primary lowland forest of Berau. In: 

J-G. Bertault and K. Kadir (Eds.). 1998. Silvicultural research in a lowland mixed 

dipterocarp forest of East Kalimantan, the Contribution of STREK project, 

CIRAD-forêt, FORDA, and PT. INHUTANI I. CIRAD-forêt Publication. Pp. 

51–93.

Suselo, T.B. and S. Riswan. 1987. Compositional and structural pattern of lowland 



mixed dipterocarp forest in the Kutai National Park, East Kalimantan. In: A.J.G.H 

Kostermanns (Ed.). Proceedings of the 3

rd

 International Round Table Conference 



on Dipterocarps.

 UNESCO, Jakarta, Indonesia. Pp. 459–470.

Swaine, M.D., J.B. Hall and I.J. Alexander. 1987. Tree populations dynamics at Kade, 

Ghana (1968-1982). Journal of Tropical Ecology 3: 359–366.

Whitmore, T.C. 1984. Tropical Rain Forest of the Far East (2

nd

 edition). Clarendon 



Press, Oxford. 352p.

Yamakura, T., A. Hagihara, S. Sukardjo and A. Ogawa. 1986. Aboveground biomass of 

tropical rain forest stands in Indonesian Borneo. Vegetatio 68: 71–82.

Yassir, I. dan N. Juliati. 2003. Prospek pengembangan Rintis Wartono Kadri sebagai 

arboretum di Wanariset Samboja. Dipterokarpa 7: 12–23.

Zarr, J.H., 2006. Biostatistical Analysis. Prentice Hall, New Jersey. 688p.



Changes in the ..... H. Krisnawati et al.

13

APPENDIX 1.  List of species and families found in the six permanent plots of 



Samboja Research Forest (listed alphabetically)

No

Species



Family

Year of Measurement 

2004

2009


(1)

(2)


(3)

(4)


(5)

1

Actinodaphne malaccensis



Lauraceae

2



Aglaia sp.

Meliaceae



3



Alangium javanicum

Alangiaceae



4



Albizia minahasae 

Fabaceae


5

Alstonia iwahigensis 



Apocynaceae



6

Anisoptera costata

Dipterocarpaceae



7

Anthocephalus chinensis 

Rubiaceae



8

Aquilaria microcarpa

Thymelaeaceae



9

Archidendron microcarpum

Fabaceae



10

Artocarpus anisophyllus 

Moraceae



11

Artocarpus dadah 

Moraceae



12

Artocarpus niditus

Moraceae



13

Artocarpus sp.

Moraceae



14

Atuna racemosa

Chrysobalanaceae



15

Barringtonia macrostachya 

Lecythidaceae



16

Beilschmiedia sp.

Lauraceae



17

Buerhavia paniculata

Lauraceae



18

Canarium littorale

Burseraceae



19

Canarium pilosum

Burseraceae



20

Chaetocarpus castanocarpus

Euphorbiaceae



21

Chionanthus sp.

Olaceae





22

Cotylelobium melanoxylon

Dipterocarpaceae



23

Cotylelobium sp.

Dipterocarpaceae



24

Cratoxylum sumatranum 

Hypericaceae



25

Crypteronia griffithii 

Crypteroniaceae



26

Dacryodes costata

Burseraceae



27

Dacryodes rubiginosa

Burseraceae



28

Dacryodes rugosa 

Burseraceae



29

Diallium indum

Caesalpiniaceae



30

Diallium sp.

Caesalpiniaceae



31

Dillenia sp.

Dilleniaceae



Journal of Forestry Research Vol. 8  No. 1, 2011: 

14

1-16



Appendix 1 (continued)

(1)


(2)

(3)


(4)

(5)


32

Diospyros borneensis 

Ebenaceae



33

Diospyros confertifolia

Ebenaceae

34



Dipterocarpus confertus 

Dipterocarpaceae



35



Dipterocarpus cornutus 

Dipterocarpaceae



36



Dipterocarpus sp.

Dipterocarpaceae



37



Dracontomelon dao

Anacardiaceae



38



Drymicarpus luridus

Anacardiaceae



39



Dryobalanops sp.

Dipterocarpaceae



40



Drypetes crassipes

Euphorbiaceae



41



Durio griffithii

Malvaceae



42



Durio oxleyanus

Malvaceae

43

Durio sp.



Malvaceae

44



Dyera costulata

Apocynaceae



45



Dysoxylum sp.

Meliaceae



46



Endiandra kingiana

Lauraceae



47



Eugenia stapfiana

Myrtaceae



48



Eusideroxylon zwageri 

Lauraceae



49



Garcinia nervosa 

Guttiferae

50

Gironniera nervosa 



Ulmaceae



51

Gluta aptera 

Anacardiaceae



52

Gluta speciosa

Anacardiaceae



53

Gonystylus velutinus

Thymelaeaceae



54

Gordonia borneensis

Theaceae



55

Hopea mengerawan 

Dipterocarpaceae



56

Hydnocarpus gracilis

Flacourtiaceae



57

Kibatalia pillosa

Apocynaceae



58

Knema conferta

Myristicaceae

59



Knema laterisia

Myristicaceae



60



Knema sp.

Myristicaceae



61



Kokoona reflexa

Celastraceae



62



Koompassia malaccensis 

Fabaceae


63



Lansium domesticum 

Meliaceae



64



Licania splendens

Chrysobalanaceae



65



Lithocarpus sp.

Fagaceae




Changes in the ..... H. Krisnawati et al.

15

Appendix 1 (continued)



(1)

(2)


(3)

(4)


(5)

66

Macaranga hypoleuca 



Euphorbiaceae



67

Macaranga lowii

Euphorbiaceae



68

Madhuca  sericea 

Sapotaceae



69

Madhuca pierrei

Sapotaceae



70

Magnolia borneensis

Magnoliaceae

71



Magnolia lasia

Magnoliaceae



72



Messua sp.

Guttiferae



73



Myristica iners 

Myristicaceae



74



Myristica maxima

Myristicaceae



75



Neoscortechinia kingii

Euphorbiaceae



76



Nephelium sp.

Sapindaceae



77



Oncosperma horridum

Palmae


78



Palaquium pseudorostratum

Sapotaceae

79

Palaquium gutta 



Sapotaceae

80



Parashorea sp.

Dipterocarpaceae

81

Parisia insignis



Anacardiaceae

82



Parkia speciosa 

Fabaceae


83



Pellacalyx sp.

Rhizophoraceae



84



Pentace laxiflora

Tiliaceae



85



Pertusadina euryncha

Rubiaceae



86



Pholidocarpus sp.

Palmae


87



Ptychopyxis javanica

Euphorbiaceae



88



Pimelodendron griffitii

Euphorbiaceae



89



Pithecellobium rosulatum 

Fabaceae


90



Polyalthia sp.

Annonaceae



91



Porterandia anisophylla

Rubiaceae

92

Prysmatomeris sp.



Rubiaceae



93

Pterospermum sp.

Sterculiaceae



94

Quercus sp.

Fagaceae



95

Rhodamnia cinerea

Myrtaceae



96

Sandaricum sp.

Meliaceae



97

Santiria griffithii

Burseraceae



98

Santiria oblongifolia

Burseraceae



99

Scaphium macropodum

Malvaceae



Journal of Forestry Research Vol. 8  No. 1, 2011: 

16

1-16



Appendix 1 (continued)

(1)


(2)

(3)


(4)

(5)


100

Schima wallichii 

Theaceae



101

Scorodocarpus borneensis 

Olacaceae



102

Shorea bracteolata 

Dipterocarpaceae



103

Shorea javanica  

Dipterocarpaceae



104

Shorea johorensis 

Dipterocarpaceae



105

Shorea laevis 

Dipterocarpaceae



106

Shorea lamellata 

Dipterocarpaceae



107

Shorea mujongensis 

Dipterocarpaceae



108

Shorea ovalis

Dipterocarpaceae



109

Shorea parvifolia 

Dipterocarpaceae



110

Shorea pauciflora 

Dipterocarpaceae



111

Shorea smithiana

Dipterocarpaceae



112

Shorea sp.1

Dipterocarpaceae

113



Shorea sp.2

Dipterocarpaceae



114



Shorea sp.3

Dipterocarpaceae



115



Sindora wallichii 

Fabaceae


116



Syzygium sp.

Myrtaceae



117



Tarenna rostata

Rubiaceae



118



Trigonostemon laevigatus 

Euphorbiaceae

119


Tristaniopsis sp.

Myrtaceae



120



Vatica odorata 

Dipterocarpaceae



121



Vitex sp.

Lamiaceae



122



Xanthophyllum griffithii 

Polygalaceae



123



Xerospermum noronhianum

Sapindaceae



124



Xylopia sp.

Annonaceae



125



Unidentified species

 



Total species



111

123


Note: √  presence of the species in all six plots



Поделитесь с Вашими друзьями:


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©www.azkurs.org 2019
rəhbərliyinə müraciət

    Ana səhifə